ITI Online Seminar 15 October 2020 11:00 FAKULTA INFORMATIKY Masarykova univerzita
Journal of Combinatorial Theory, Series B Volume 140, January 200, Pages 323-371
Toroidal grid minors and stretch in embedded graphs
- orientable surfaces only!
Basic definitions: face-width and edge-width
separating / non-separating primal dual
dual edge-width vs. face-width Sorched 2 / Souched by by edges chains of faces val.
Having large face-width
Robertson and Seymour [29] For any graph H embedded on a surface Σ , there exists a constant $c: = c_{\Sigma}(H)$ such that every graph G that embeds in Σ with face-width at least c contains H as a minor.
Brunet, Mohar, and Richter Large face-width >c => various collections of cycles of ord. $\Omega(c)$
m
kde Graaf and Schrijver 9
Let G be a graph embedded in the torus with face-width $fw(G) = r \ge 5$. Then G contains the toroidal $\lfloor 2r/3 \rfloor \times \lfloor 2r/3 \rfloor$ -grid as a minor.

Let G be a graph embedded in the torus with face-width $fw(G) = r \ge 5$. Then G contains the toroidal $|2r/3| \times |2r/3|$ -grid as a minor. - best possible ! New definitions - stretch · One-crossing position (of two loops) --> one-leap (cf. crossing numb.) N.M.>DM Definition 2.7 Stretch Let G be a graph embedded in an orientable surface Σ . The stretch Str(G) of G is the minimum value of $||A|| \cdot ||B||$ over all pairs of cycles $A, B \subseteq G$ that are in a one-leap position in Σ . v 1-leap = monoondy ! Highlights of stretch ⊙ efficiently computable (in P) [S. Cabello, M. Chimani, PH, 2014] 1 · two-dimensional analogue of edge-width O relation of dual stretch to toroidal grids ... (on Z1) Definition 1.3 Toroidal expanse The toroidal expanse of a graph G, denoted by Tex(G), is the larges value $p \cdot q$ over all integers $p, q \ge 3$ such that G contains a toroidal $p \times q$ -grid as a minor. 23 Highlights of stretch cont. \odot relation of dual stretch to the crossing number... (on \mathbb{Z}_{1}) $cn(G) \leq Sh_2(G^*)$

 $"Str(G^*) \preceq_{g,\Delta} Tex(G)"$ Theorem 3.1 orem 3.1 Let G be a graph embedded in the torus. Suppose that G contains a collection $\{C_1,\ldots,C_p\}$ of Let G be a graph embedded in t<mark>he torus.</mark> Suppose that G contains a <mark>coll</mark> $p \ge 3$ pairwise disjoint, pairwise homotopic cycles, and a collection $\{D_1, \dots, D_q\}$ of $q \ge 3$ c cycles, and a colle $p \ge 3$ pair lisjoint, pairwise h pic cycles. Further suppose that the pair (C_1, D_1) is a basis pairwise disjoint, pairwise homotopic cycles. Further suppose that the pair (C_1, D_1) is a basis. Then G contains a $p \times q$ -toroidal grid as a minor oidal grid as a minor. Then G contai Ci, R_0 $\underbrace{\ }^{"}cr(G) \preceq_{g} Pcost(G^{*}) \left(\preceq_{g} Str(G_{1}^{*})"\right)$ Theorem 3.6 Let G be a graph embedded in Σ_g . Let $(G_1^*, \gamma_1), \ldots, (G_g^*, \gamma_g)$ be any good planarizing sequence for the topological dual $\overline{G^*}$ with associated lengths $\{\underline{k}_i, \underline{\ell}_i\}_{i=1,\ldots,g}$ (Definition sequence for the topological dual G^{-} with associated lengths $\underbrace{k_{i}, i_{1} \in [i=1, ..., g}_{i=1} \otimes g_{i=1}^{k_{i}}$. Then $cr(G) \leq 3 \cdot (2^{g+1} - 2 - g) \cdot Pcost(G^{*}) = 3 \cdot (2^{g+1} - 2 - g) \cdot \max\{k_{i} \cdot \ell_{i}\}_{i=1, ..., g}$. $(cr(G) \preceq_g \underline{Pcost(G^*)} \preceq_g Str(G_1^*)))$ Lemma 3.7 Lemma 3.7 Let H be a graph embedded in the surface Σ_g . Let $k := ewn^*(H)$ and assume Let H be a graph embedded in the surface Σ_g . Let $k := ewn^*(H)$ and assume $k \geq 2^{g}$. Let ℓ be the largest integer such that there is a cycle γ of length k in H^{*} $k\geq 2^g.$ Let ℓ be the largest integer such that there is a cycle γ of length k in H^* whose shortest γ -switching ear has length ℓ . Then there exists an integer g', whose shortest γ -switching ear has length ℓ . Then there exists an integer g', $0 < g' \leq g$, and a subgraph H' of H embedded in $\Sigma_{g'}$ such that $0 < g' \leq g$, and a subgraph H' of H embedded in $\Sigma_{g'}$ such that $n^*(H') \ge 2^{g'-g}k$ and $Str^*(H') \ge 2^{2g'-2g}k$ $\frac{Str^*(H')}{|l|} \ge \frac{2^{2g'-2g'}}{G_1}$ $ewn^*(H') \geq 2^{g'-g}k$ and $\underline{Pcost}(\underline{G^*}) \preceq_g Str(\overline{G_1^*}) \preceq_{g,\Delta} \underline{Tex}(G_1) \leq Tex(G)$ 5 Lemma 3.8 Let G be a graph embedded in Σ_g . Let $(G_i^*, \gamma_i)_{i=1,\ldots,g}$ be a good planarizing sequence of G^* , with associated lengths $\{k_i, \ell_i\}_{i=1,\ldots,g^*}$ Suppose that $ewn^*(G) \ge 5 \cdot 2^{g-1} \lfloor \Delta(G)/2 \rfloor$. There exists $g', 0 < g' \le g$, and a subg raph H' of G embedded in $\Sigma_{g'}$ such that $ewn^*(H') \ge 5 \cdot 2^{g'-1} \lfloor \Delta(G)/2 \rfloor$ and $\underbrace{Tex(G) \geq \frac{1}{7} 2^{3-2g} \left\lfloor \Delta(G)/2 \right\rfloor^{-2} \cdot Str^*(H') \geq \frac{1}{7} 2^{3-2g} \left\lfloor \Delta(G)/2 \right\rfloor^{-2} \cdot \max\left\{k_i \cdot \ell_i\right\}}_{(2)}$

Gembedded in $\Sigma_{g'}$ such that $ewn^*(H') \ge 5 \cdot 2^{g'-1} \lfloor \Delta(G)/2 \rfloor$ and

 $\underbrace{Tex(G) \geq \frac{1}{7} 2^{3-2g} \lfloor \Delta(G)/2 \rfloor^{-2} \cdot Str^*(H') \geq \frac{1}{7} 2^{3-2g} \lfloor \Delta(G)/2 \rfloor^{-2} \cdot \max\left\{k_i \cdot \ell_i\right\}}_{\text{Gg}}$

Theorem 3.10

Let g > 0 and Δ be integer constants. There are constant $c'_0, c'_1 > 0$ and $c''_0, c''_1 > 0$, depending on g and Δ , such that the following holds for any graph G of maximum degree Δ embedded in Σ_g with nonseparating dual edge-width at least $5 \cdot 2^{g-1} \lfloor \Delta/2 \rfloor$: There exists $g', 0 < g' \leq g$, and a subgraph $\underline{H'}$ of G embedded in $\Sigma_{g'}$ such that $eum^*(H') \geq 5 \cdot 2^{g'-1} \lfloor \Delta/2 \rfloor$ and

(6)

(7)

 $H' = G_{\eta}$ $c_0' \cdot cr(G) \leq Str^*(H') \leq c_1' \cdot cr(G)$. Consequently, $c_0'' \cdot Tex(G) \leq Str^*(H') \leq c_1'' \cdot Tex(G)$

Algorithmic part (simplified)

Weaker version of Theorem 1.4(b)

Let g > 0 and Δ be integer constants. Assume G is a graph of maximum degree Δ embeddable in the surface Σ_g with $ewn^*(G) \ge 5 \cdot 2^{g-1} \lfloor \Delta/2 \rfloor$. There is an algorithm that, in time $\mathcal{O}(n \log \log n)$ where n = |V(G)|, outputs a drawing of G in the plane with at most $c'_{2} \cdot er(G)$ crossings, where $c'_{2} > 0$ depends only on g and Δ

EAK?