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Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion
of density t(·, ·). (E.g. homomorphism density in graphs.)

(F2) Left-convergence: A sequence of structures (Sn) is left-convergent if
(t(H, Sn)) converges for every finite substructure H.

(F3) Limit objects: We define a space of analytic limits objects and the
notion of density is extended to those limit objects. (Graphons.)

(F4) Compactness: Every sequence of structures contains a subsequence
converging to a limit object. (Lovász-Szegedy ’06.)

(F5) Denseness: For every limit object there exists a converging sequence
of discrete structures. (W -random graphs.)

(F6) Equivalence of local and global: There is another ’global’ metric
generating the same topology as left-convergence. (Cut-distance.)

Graphs: Borgs-Chayes-Lovász-Sós-Szegedy-Vesztergombi (2007+)
Permutations: Hoppen-Kohayakawa-Moreira-Ráth-Sampaio (2013)
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Limits of permutations

A permutation is a bijection π : [k]→ [k]. ([k] as an ordered set!)

Densities: For σ ∈ Sk and τ ∈ Sm, with m ≤ k, let d(τ, σ) be the
probability that for a randomly choosen ordered m-set
X = {x1 < · · · < xm} ⊆ [k] we have

σ(xi ) ≤ σ(xj) iff τ(i) ≤ τ(j) ∀i , j ∈ [m] .

τ =
(

1 2 3
1 3 2

)
, σ =

(
1 2 3 4 5 6 7 8
6 5 4 8 3 2 7 1

)
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Limits of permutations

A permuton P is a probability measure on [0, 1]2 that has uniform
marginals, i.e. P(A× [0, 1]) = P([0, 1]× A) = λ(A), where λ is the
Lebesgue measure.

For this theory a compactness result, a cut-norm, and counting lemmas
were developed by Hoppen, Kohayakawa, Moreira, Ráth and Sampaio (’13,
JCTB).
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JCTB).

Frederik Garbe (CAS) Limits of Latin squares October 22, 2020 4 / 25



Limits of permutations

A permuton P is a probability measure on [0, 1]2 that has uniform
marginals, i.e. P(A× [0, 1]) = P([0, 1]× A) = λ(A), where λ is the
Lebesgue measure.

For this theory a compactness result, a cut-norm, and counting lemmas
were developed by Hoppen, Kohayakawa, Moreira, Ráth and Sampaio (’13,
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Latin square

A Latin square is an n × n matrix (with columns ordered from left to
right and rows from top to bottom) such that

in each row each of the numbers {1, . . . , n} appears exactly once;
in each column each of the numbers {1, . . . , n} appears exactly once.

(Not that the values are ordered too, from small to large.)

One can think of a Latin square as a 2-dimensional permutation.
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Densities in Latin squares
We call a k × ` matrix A ∈ [k`]k×` a pattern if the entries are exactly the
numbers 1, · · · , k`.

For a Latin square L of order n and a pattern A of dimension k × ` we
define the density of A in L, written t(A, L), as the probability that for a
randomly chosen ordered k-set R = {r1 < · · · < rk} ⊆ [n] and a randomly
chosen `-set C = {c1 < · · · < c`} ⊆ [n] we have that L[R,C ] ≡ A, i.e.

L[ri , cj ] ≤ L[ri ′ , cj′ ] iff Ai ,j ≤ Ai ′,j′ ∀i , i ′ ∈ [k], j , j ′ ∈ [`] .

Example

A =
(

1 2
3 4

)
L =

1 5 3 6 4 2
4 3 6 1 2 5
3 4 5 2 1 6
6 2 4 3 5 1
2 6 1 5 3 4
5 1 2 4 6 3

t(A, L) = 7
225
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Limit objects - Motivational examples
Standard Cyclic Example

Ln(i , j) := i + j mod n

0 1
1 0

0 1 2
1 2 0
2 0 1

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

So should the limit object
be a function

L : [0, 1]2 → [0, 1] ?
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Limit objects - Motivational examples

Probabilistic example

Pn(i , j) :=
{

i + j mod n with probability 1/2,
−i − j mod n with probability 1/2.

P is the space of probability distributions on [0, 1] and

L : [0, 1]2 → P ?
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Limit objects - Motivational examples
Odd-even example

Hn(i , j) :=
{

i + j mod n if i + j ≡ 0 mod 2,
−i − j mod n if i + j ≡ 1 mod 2.

0 1
1 0

0 3 2 1
3 2 1 0
2 1 0 3
1 0 3 2

0 5 2 3 4 1
5 2 3 4 1 0
2 3 4 1 0 5
3 4 1 0 5 2
4 1 0 5 2 3
1 0 5 2 3 4
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Limit objects - Latinons
Let Ω be an atomless separable probability space with measure µ and let
P be the space of Borel probability measures.

A Latinon is a pair L = (W , f ) such that:
W : Ω2 → P is a measurable function;
f : Ω→ [0, 1] is a measure preserving function;
For almost every s ∈ Ω and for every measurable set C ⊂ [0, 1] we
have ∫

t∈Ω
W (s, t) (C)dµ = λ(C) =

∫
t∈Ω

W (t, s) (C)dµ .

Equivalently: (νW , f ), where f is as above and νW is a probability
measure on Ω2 × [0, 1] with uniform marginals related to the above
definition via

νW (S × T × V ) =
∫

S

∫
T

W (x , y)(V )dxdy .
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definition via

νW (S × T × V ) =
∫

S

∫
T

W (x , y)(V )dxdy .
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Limit objects - Latinons

Limit of the cyclic example

Ln(i , j) := i + j mod n

Ω = [0, 1], f is the identity and W : [0, 1]2 → P is defined by

W (x , y) := Dirac(x + y mod 1)
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Limit objects - Latinons

Limit of the probabilistic example

Pn(i , j) :=
{

i + j mod n with probability 1/2,
−i − j mod n with probability 1/2.

Ω = [0, 1], f is the identity and W : [0, 1]2 → P is defined by

W (x , y) := 1
2Dirac(x + y mod 1) + 1

2Dirac(−x − y mod 1)
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Limit objects - Latinons

Limit of the odd-even example

Hn(i , j) :=
{

i + j mod n if i + j ≡ 0 mod 2,
−i − j mod n if i + j ≡ 1 mod 2.

Ω = [0, 1]× {odd, even} ,

f : [0, 1]× {odd, even} → [0, 1], (x , a) 7→ x

W : ([0, 1]× {odd, even})2 → P is defined by

W ((x , a), (y , b)) :=
{

Dirac(x + y mod 1) if a = b,
Dirac(−x − y mod 1) if a 6= b.
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Densities in Latinons
For a Latinon L = (W , f ), define

t(A, L) := P(A∗ ≡ A | when a k × ` matrix A∗ is ‘sampled’ from (W , f )) .

Sampling: Select (x1, . . . , xk) ∈ Ωk and (y1, . . . , y`) ∈ Ω` with

f (x1) < f (x2) < · · · < f (xk) and f (y1) < f (y2) < · · · < f (y`) u.a.r.

Then sample A∗i ,j ∈ [0, 1] from the distribution W (xi , yj).

Example

For A =
(

1 2
3 4

)
,

t(A, (W , f )) = 1
6 .
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Densities in Latinons

For a matrix A ∈ Rk×` we set

RA([0, 1]) := {M ∈ [0, 1]k×` | M ≡ A} .

Densities in Latinons
Let (W , f ) be a Latinon and A ∈ Rk×`. We denote by t(A, (W , f )) the
density of the pattern A in (W , f ) and define it to be

t(A, (W , f )) :=

k!`!
∫

x∈[0,1]k<f

∫
y∈[0,1]`<f

 ⊗
(i ,j)∈[k]×[`]

W (xi , yj)

 (RA([0, 1]))dydx .
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Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion
of density t(·, ·). (E.g. homomorphism density in graphs.)

(F2) Left-convergence: A sequence of structures (Sn) is left-convergent if
(t(H, Sn)) converges for every finite substructure H.

(F3) Limit objects: We define a space of analytic limits objects and the
notion of density is extended to those limit objects. (Graphons.)

(F4) Compactness: Every sequence of structures contains a subsequence
converging to a limit object. (Lovász-Szegedy ’06.)

(F5) Denseness: For every limit object there exists a converging sequence
of discrete structures. (W -random graphs.)

(F6) Equivalence of local and global: There is another ’global’ metric
generating the same topology as left-convergence. (Cut-distance.)
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Compactness theorem

Let (Ln)n∈N be a sequence of Latin squares or Latinons, and let (W , f ) be
a Latinon. We say Ln → (W , f ) if limn→∞ t(A, Ln) = t(A, (W , f )) for
every k, ` ∈ N and k × ` pattern A.

Compactness for Latinons (G., Hancock, Hladký, Sharifzadeh, 20+)
Let (Ln)n∈N be a sequence of Latinons. There exists a subsequence
(Lni )i∈N and a Latinon (W , f ) such that

Lni → (W , f ) .
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Proof of compactness: preparation

W0: space of measurable, not necessarily symmetric, functions Ω2 → [0, 1]

d�(U,W ) = ‖U −W ‖� = sup
S,T⊆Ω

∣∣∣∣∫
S×T

(U −W )(x , y)dxdy
∣∣∣∣ .

We can define a metric δN� on WN
0 by setting

δN�((Un)n∈N, (Wn)n∈N) = inf
ϕ:Ω→Ω

∞∑
n=1

1
2n d�(Un,W ϕ

n ) ,

Generalised compactness for graphons (∼ Lovász-Szegedy ’06)
(WN

0 , δ
N
�) is compact.

(Not the compactness from Tychonoff’s theorem.)
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Proof of compactness: overview

We denote the metric space of Latinons by (L, δL) and construct an
injective function

ι : (L, δL)→ (WN
0 , δ

N
�), L 7→ LN .

1 (ι(L), δN�) is compact,

2 ι−1 : (ι(L), δN�)→ (L, δL) is continuous.

Continuous image of compact space is compact, hence ι−1(ι(L)) = L is
compact.
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Proof method - Compressions of Latinons

Let (W , f ) be a Latinon.

Partition [0, 1) = Jd ,1 ∪ · · · ∪ Jd ,2d , where Jd ,s :=
[ s−1

2d ,
s

2d
)
.

Define Wd ,s : Ω2 → [0, 1] by Wd ,s(x , y) := W (x , y)(Jd ,s);

and Of : Ω2 → [0, 1] by Of (x , y) =
{

1 if f (x) < f (y)
0 otherwise

.

Define compression ι((W , f )) := (Of ,W1,1,W1,2, . . . ).
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Proof method - Compressions of Latinons

W (x , y) = Dirac(x + y mod 1)

Wd ,s(x , y) = W (x , y)(
[s − 1

2d ,
s

2d
)
) =

{
1 if (x + y mod 1) ∈ Jd ,s ;
0 otherwise.

Figure: W1,1 and W1,2

Figure: W2,1,W2,2,W2,3,W2,4
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Cut-distance for Latinons

Cut-distance for graphons W and U
δ�(W ,U) := infϕ∈S[0,1] ‖W − Uϕ‖� where
‖W − Uϕ‖� := supS,T⊆[0,1]

∣∣∣∫S×T W (x , y)− U(ϕ(x), ϕ(y))dydx
∣∣∣.

Cut-distance for Latinons L1 = (W , f ) and L2 = (U , g)
δL(L1, L2) := inf

ϕ,ψ∈SΩ

(∥∥W − Uϕ,ψ
∥∥

L
+
∥∥Of − Og◦ϕ∥∥

�
+
∥∥Of − Og◦ψ∥∥

�

)
where O : Ω2 → [0, 1] is a graphon s.t. O(x , y) :=

{
1, x < y ,
0, otherwise;

∥∥W − Uϕ,ψ
∥∥

L
:= sup

R,C⊆Ω,
V⊆[0,1] interval

∣∣∣∣∫
x∈R

∫
y∈C

W (x , y)(V )− U(ϕ(x), ψ(y))(V )dydx

∣∣∣∣ .
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Motivation for the cut-distance

Ln(i , j) :=
{

i + j mod n if i + j ≡ 0 mod 2,
−i − j mod n if i + j ≡ 1 mod 2.

L′n(i , j) :=
{
−i − j mod n if i + j ≡ 0 mod 2,
i + j mod n if i + j ≡ 1 mod 2.

0 5 2 3 4 1
5 2 3 4 1 0
2 3 4 1 0 5
3 4 1 0 5 2
4 1 0 5 2 3
1 0 5 2 3 4

0 1 4 3 2 5
1 4 3 2 5 0
4 3 2 5 0 1
3 2 5 0 1 4
2 5 0 1 4 3
5 0 1 4 3 2
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Equivalence of local and global
Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20+)
Let k, ` ∈ N. Then there exists a constant ck,` such that for every d ∈ N,
Latinons L1, L2 and k × ` pattern A we have

|t(A, L1)− t(A, L2)| < ck,`δL(L1, L2)1/(2k`) .

Inverse Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20+)
For every δ > 0 there exist k ∈ N and ε > 0 such that for every two
Latinons L1 and L2 with δL(L1, L2) > δ there exists a k × k pattern A such
that

|t(A, L1)− t(A, L2)| > ε .

Equivalence
Convergence w.r.t. densities t(·, ·) ⇐⇒ convergence w.r.t. cut-distance
δL.
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Let k, ` ∈ N. Then there exists a constant ck,` such that for every d ∈ N,
Latinons L1, L2 and k × ` pattern A we have

|t(A, L1)− t(A, L2)| < ck,`δL(L1, L2)1/(2k`) .

Inverse Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20+)
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Minimality

Approximation (G., Hancock, Hladký, Sharifzadeh, 20+)
For each Latinon (W , f ) there exists a sequence (Ln)n∈N of finite Latin
squares of growing orders such that

Ln → (W , f ) .
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Proof idea - Rödl nibble + Keevash

1 Approximate the Latinon by a step-Latinon which on each step is a
constant multiple of the Lebesgue-measure.

2 A Latin square corresponds to a triangle decomposition of Kn,n,n.

3 So use a weighted Rödl nibble using measures from (1) to produce an
approximate triangle decomposition of Kn,n,n.

4 Use tools from Keevash’s theory about designs to extend the
approximate triangle decomposition (partial Latin square) to a
triangle decomposition (complete Latin square).
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3 So use a weighted Rödl nibble using measures from (1) to produce an
approximate triangle decomposition of Kn,n,n.

4 Use tools from Keevash’s theory about designs to extend the
approximate triangle decomposition (partial Latin square) to a
triangle decomposition (complete Latin square).

Frederik Garbe (CAS) Limits of Latin squares October 22, 2020 24 / 25
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Further Questions
Král’-Pikhurko (’13): If P is a permuton and d(σ,P) = 1

4! for all
σ ∈ S4, then P is the two-dimensional Lesbesgue measure.

Question: Exist k, ` ∈ N such that the follwing holds? If L is a
Latinon and t(A, L) = 1

(k`)! for all k × ` patterns A, then L is the
three-dimensional Lebesgue measure.

Removal lemma: Given a k × ` pattern A and a Latin square L, if
t(A, L) small, can we remove/change a small number of entries of L
to get L′ with t(A, L′) = 0?

Quantification via entropy: Can one define the entropy of a Latinon L
s.t. the number of Latin squares of order n close to L is counted by
the entropy of L?

Thank you for listening.
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