Limits of sequences of Latin squares

Frederik Garbe

Institute of Mathematics
Czech Academy of Sciences

October 22, 2020

Joint work with Robert Hancock (University of Heidelberg), Jan Hladký (Czech Academy of Sciences) and Maryam Sharifzadeh (Umeå University)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)
(F4) Compactness: Every sequence of structures contains a subsequence converging to a limit object. (Lovász-Szegedy '06.)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)
(F4) Compactness: Every sequence of structures contains a subsequence converging to a limit object. (Lovász-Szegedy '06.)
(F5) Denseness: For every limit object there exists a converging sequence of discrete structures. (W-random graphs.)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)
(F4) Compactness: Every sequence of structures contains a subsequence converging to a limit object. (Lovász-Szegedy '06.)
(F5) Denseness: For every limit object there exists a converging sequence of discrete structures. (W-random graphs.)
(F6) Equivalence of local and global: There is another 'global' metric generating the same topology as left-convergence. (Cut-distance.)

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)
(F4) Compactness: Every sequence of structures contains a subsequence converging to a limit object. (Lovász-Szegedy '06.)
(F5) Denseness: For every limit object there exists a converging sequence of discrete structures. (W-random graphs.)
(F6) Equivalence of local and global: There is another 'global' metric generating the same topology as left-convergence. (Cut-distance.)
Graphs: Borgs-Chayes-Lovász-Sós-Szegedy-Vesztergombi (2007+) Permutations: Hoppen-Kohayakawa-Moreira-Ráth-Sampaio (2013)

Limits of permutations

A permutation is a bijection $\pi:[k] \rightarrow[k]$. ([k] as an ordered set!)

Limits of permutations

A permutation is a bijection $\pi:[k] \rightarrow[k] .([k]$ as an ordered set!)
Densities: For $\sigma \in S_{k}$ and $\tau \in S_{m}$, with $m \leq k$, let $d(\tau, \sigma)$ be the probability that for a randomly choosen ordered m-set $X=\left\{x_{1}<\cdots<x_{m}\right\} \subseteq[k]$ we have

$$
\sigma\left(x_{i}\right) \leq \sigma\left(x_{j}\right) \text { iff } \tau(i) \leq \tau(j) \quad \forall i, j \in[m]
$$

Limits of permutations

A permutation is a bijection $\pi:[k] \rightarrow[k]$. ([k] as an ordered set!)
Densities: For $\sigma \in S_{k}$ and $\tau \in S_{m}$, with $m \leq k$, let $d(\tau, \sigma)$ be the probability that for a randomly choosen ordered m-set $X=\left\{x_{1}<\cdots<x_{m}\right\} \subseteq[k]$ we have

$$
\begin{gathered}
\sigma\left(x_{i}\right) \leq \sigma\left(x_{j}\right) \text { iff } \tau(i) \leq \tau(j) \quad \forall i, j \in[m] \\
\tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 5 & 4 & 8 & 3 & 2 & 7 & 1
\end{array}\right)
\end{gathered}
$$

Limits of permutations

A permutation is a bijection $\pi:[k] \rightarrow[k]$. ([k] as an ordered set!)
Densities: For $\sigma \in S_{k}$ and $\tau \in S_{m}$, with $m \leq k$, let $d(\tau, \sigma)$ be the probability that for a randomly choosen ordered m-set $X=\left\{x_{1}<\cdots<x_{m}\right\} \subseteq[k]$ we have

$$
\begin{gathered}
\sigma\left(x_{i}\right) \leq \sigma\left(x_{j}\right) \text { iff } \tau(i) \leq \tau(j) \quad \forall i, j \in[m] \\
\tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 5 & 4 & 8 & 3 & 2 & 7 & 1
\end{array}\right)
\end{gathered}
$$

Limits of permutations

A permuton P is a probability measure on $[0,1]^{2}$ that has uniform marginals, i.e. $P(A \times[0,1])=P([0,1] \times A)=\lambda(A)$, where λ is the Lebesgue measure.

Limits of permutations

A permuton P is a probability measure on $[0,1]^{2}$ that has uniform marginals, i.e. $P(A \times[0,1])=P([0,1] \times A)=\lambda(A)$, where λ is the Lebesgue measure.

Limits of permutations

A permuton P is a probability measure on $[0,1]^{2}$ that has uniform marginals, i.e. $P(A \times[0,1])=P([0,1] \times A)=\lambda(A)$, where λ is the Lebesgue measure.

For this theory a compactness result, a cut-norm, and counting lemmas were developed by Hoppen, Kohayakawa, Moreira, Ráth and Sampaio ('13, JCTB).

Latin square

A Latin square is an $n \times n$ matrix (with columns ordered from left to right and rows from top to bottom) such that

Latin square

A Latin square is an $n \times n$ matrix (with columns ordered from left to right and rows from top to bottom) such that

- in each row each of the numbers $\{1, \ldots, n\}$ appears exactly once;

Latin square

A Latin square is an $n \times n$ matrix (with columns ordered from left to right and rows from top to bottom) such that

- in each row each of the numbers $\{1, \ldots, n\}$ appears exactly once;
- in each column each of the numbers $\{1, \ldots, n\}$ appears exactly once.

Latin square

A Latin square is an $n \times n$ matrix (with columns ordered from left to right and rows from top to bottom) such that

- in each row each of the numbers $\{1, \ldots, n\}$ appears exactly once;
- in each column each of the numbers $\{1, \ldots, n\}$ appears exactly once.
(Not that the values are ordered too, from small to large.)

Latin square

A Latin square is an $n \times n$ matrix (with columns ordered from left to right and rows from top to bottom) such that

- in each row each of the numbers $\{1, \ldots, n\}$ appears exactly once;
- in each column each of the numbers $\{1, \ldots, n\}$ appears exactly once.
(Not that the values are ordered too, from small to large.)
One can think of a Latin square as a 2-dimensional permutation.

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.
For a Latin square L of order n and a pattern A of dimension $k \times \ell$ we define the density of A in L, written $t(A, L)$, as the probability that for a randomly chosen ordered k-set $R=\left\{r_{1}<\cdots<r_{k}\right\} \subseteq[n]$ and a randomly chosen ℓ-set $C=\left\{c_{1}<\cdots<c_{\ell}\right\} \subseteq[n]$ we have that $L[R, C] \equiv A$, i.e.

$$
L\left[r_{i}, c_{j}\right] \leq L\left[r_{i^{\prime}}, c_{j^{\prime}}\right] \text { iff } A_{i, j} \leq A_{i^{\prime}, j^{\prime}} \quad \forall i, i^{\prime} \in[k], j, j^{\prime} \in[\ell] .
$$

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.
For a Latin square L of order n and a pattern A of dimension $k \times \ell$ we define the density of A in L, written $t(A, L)$, as the probability that for a randomly chosen ordered k-set $R=\left\{r_{1}<\cdots<r_{k}\right\} \subseteq[n]$ and a randomly chosen ℓ-set $C=\left\{c_{1}<\cdots<c_{\ell}\right\} \subseteq[n]$ we have that $L[R, C] \equiv A$, i.e.

$$
L\left[r_{i}, c_{j}\right] \leq L\left[r_{i^{\prime}}, c_{j^{\prime}}\right] \text { iff } A_{i, j} \leq A_{i^{\prime}, j^{\prime}} \quad \forall i, i^{\prime} \in[k], j, j^{\prime} \in[\ell]
$$

Example

\(A=\left(\begin{array}{ll}1 \& 2

3 \& 4\end{array}\right) \quad L=\)| 1 | 5 | 3 | 6 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 3 | 6 | 1 | 2 | 5 |
| 3 | 4 | 5 | 2 | 1 | 6 |
| 6 | 2 | 4 | 3 | 5 | 1 |
| 2 | 6 | 1 | 5 | 3 | 4 |
| 5 | 1 | 2 | 4 | 6 | 3 |

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.
For a Latin square L of order n and a pattern A of dimension $k \times \ell$ we define the density of A in L, written $t(A, L)$, as the probability that for a randomly chosen ordered k-set $R=\left\{r_{1}<\cdots<r_{k}\right\} \subseteq[n]$ and a randomly chosen ℓ-set $C=\left\{c_{1}<\cdots<c_{\ell}\right\} \subseteq[n]$ we have that $L[R, C] \equiv A$, i.e.

$$
L\left[r_{i}, c_{j}\right] \leq L\left[r_{i^{\prime}}, c_{j^{\prime}}\right] \text { iff } A_{i, j} \leq A_{i^{\prime}, j^{\prime}} \quad \forall i, i^{\prime} \in[k], j, j^{\prime} \in[\ell]
$$

Example

$A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \quad L=\begin{array}{llllll}1 & 5 & 3 & 6 & 4 & 2 \\ 4 & 3 & 6 & 1 & 2 & 5 \\ 3 & 4 & 5 & 2 & 1 & 6 \\ 6 & 2 & 4 & 3 & 5 & 1 \\ 2 & 6 & 1 & 5 & 3 & 4 \\ 5 & 1 & 2 & 4 & 6 & 3\end{array}$

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.
For a Latin square L of order n and a pattern A of dimension $k \times \ell$ we define the density of A in L, written $t(A, L)$, as the probability that for a randomly chosen ordered k-set $R=\left\{r_{1}<\cdots<r_{k}\right\} \subseteq[n]$ and a randomly chosen ℓ-set $C=\left\{c_{1}<\cdots<c_{\ell}\right\} \subseteq[n]$ we have that $L[R, C] \equiv A$, i.e.

$$
L\left[r_{i}, c_{j}\right] \leq L\left[r_{i^{\prime}}, c_{j^{\prime}}\right] \text { iff } A_{i, j} \leq A_{i^{\prime}, j^{\prime}} \quad \forall i, i^{\prime} \in[k], j, j^{\prime} \in[\ell]
$$

Example

\(A=\left(\begin{array}{ll}1 \& 2

3 \& 4\end{array}\right) \quad L=\)| 1 | 5 | 3 | 6 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 3 | 6 | 1 | 2 | 5 |
| 3 | 4 | 5 | 2 | 1 | 6 |
| 6 | 2 | 4 | 3 | 5 | 1 |
| 2 | 6 | 1 | 5 | 3 | 4 |
| 5 | 1 | 2 | 4 | 6 | 3 |

Densities in Latin squares

We call a $k \times \ell$ matrix $A \in[k \ell]^{k \times \ell}$ a pattern if the entries are exactly the numbers $1, \cdots, k \ell$.
For a Latin square L of order n and a pattern A of dimension $k \times \ell$ we define the density of A in L, written $t(A, L)$, as the probability that for a randomly chosen ordered k-set $R=\left\{r_{1}<\cdots<r_{k}\right\} \subseteq[n]$ and a randomly chosen ℓ-set $C=\left\{c_{1}<\cdots<c_{\ell}\right\} \subseteq[n]$ we have that $L[R, C] \equiv A$, i.e.

$$
L\left[r_{i}, c_{j}\right] \leq L\left[r_{i^{\prime}}, c_{j^{\prime}}\right] \text { iff } A_{i, j} \leq A_{i^{\prime}, j^{\prime}} \quad \forall i, i^{\prime} \in[k], j, j^{\prime} \in[\ell]
$$

Example

\(A=\left(\begin{array}{ll}1 \& 2

3 \& 4\end{array}\right) \quad L=\)| 1 | 5 | 3 | 6 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 3 | 6 | 1 | 2 | 5 |
| 3 | 4 | 5 | 2 | 1 | 6 |
| 6 | 2 | 4 | 3 | 5 | 1 |
| 2 | 6 | 1 | 5 | 3 | 4 |
| 5 | 1 | 2 | 4 | 6 | 3 |$\quad t(A, L)=\frac{7}{225}$

Limit objects - Motivational examples

Standard Cyclic Example

$$
L_{n}(i, j):=i+j \bmod n
$$

Limit objects - Motivational examples

Standard Cyclic Example

$$
L_{n}(i, j):=i+j \bmod n
$$

$$
\begin{array}{llllllllllllll}
& & & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\
4 & 4 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 & 3 & 4 & 0 & 1 \\
1 & 0 & 2 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
2 & 3 & 4 & 0 & 1 & 2 \\
& & & & & & & & & 0 & 1 & 2 & 3
\end{array}
$$

Limit objects - Motivational examples

Standard Cyclic Example

$$
L_{n}(i, j):=i+j \bmod n
$$

			0	1	2	0	1	2	3	0	1	2	3
0	1	2	3	0	1	2	3	4	0				
0	1	1	2	0	2	3	4	0	1				
1	0	2	0	1	2	3	0	1	3	0	1	2	3
4	4	0	1	2									
										0	1	2	3

Limit objects - Motivational examples

Standard Cyclic Example

$$
L_{n}(i, j):=i+j \bmod n
$$

			0	1	2	0	1	2	3	0	1	2	3
0	1	2	3	0	1	2	3	4	0				
0	1	1	2	0	2	3	4	0	1				
1	0	2	0	1	2	3	0	1	3	0	1	2	3
4	4	0	1	2									
										0	1	2	3

So should the limit object be a function

$$
L:[0,1]^{2} \rightarrow[0,1] ?
$$

Limit objects - Motivational examples

Probabilistic example

$$
P_{n}(i, j):= \begin{cases}i+j \bmod n & \text { with probability } 1 / 2 \\ -i-j \bmod n & \text { with probability } 1 / 2\end{cases}
$$

Limit objects - Motivational examples

Probabilistic example

$$
P_{n}(i, j):= \begin{cases}i+j \bmod n & \text { with probability } 1 / 2, \\ -i-j \bmod n & \text { with probability } 1 / 2 .\end{cases}
$$

Limit objects - Motivational examples

Probabilistic example

$$
P_{n}(i, j):= \begin{cases}i+j \bmod n & \text { with probability } 1 / 2 \\ -i-j \bmod n & \text { with probability } 1 / 2 .\end{cases}
$$

\mathcal{P} is the space of probability distributions on $[0,1]$ and

$$
L:[0,1]^{2} \rightarrow \mathcal{P} ?
$$

Limit objects - Motivational examples

Odd-even example

$$
H_{n}(i, j):= \begin{cases}i+j \bmod n & \text { if } i+j \equiv 0 \quad \bmod 2, \\ -i-j \bmod n & \text { if } i+j \equiv 1 \quad \bmod 2 .\end{cases}
$$

Limit objects - Motivational examples

Odd-even example

$$
\begin{aligned}
& H_{n}(i, j):=\left\{\begin{array}{lllllllll}
i+j & \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
-i-j & \bmod n & \text { if } i+j \equiv 1 & \bmod 2 .
\end{array}\right. \\
& \begin{array}{lllllllllll}
0 & 1 \\
1
\end{array} \\
& \hline
\end{aligned} \quad \begin{array}{lllllllllll}
0 & 3 & 2 & 1 & 0 & 2 & 3 & 4 & 1 & 0 & 5 \\
2 & 1 & 0 & 3 & 3 & 4 & 1 & 0 & 5 & 2 \\
1 & 0 & 3 & 2 & 4 & 1 & 0 & 5 & 2 & 3 \\
1 & 0 & 5 & 2 & 3 & 4
\end{array}
$$

Limit objects - Motivational examples

Odd-even example

$$
\begin{aligned}
& H_{n}(i, j):=\left\{\begin{array}{lllllllll}
i+j & \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
-i-j & \bmod n & \text { if } i+j \equiv 1 & \bmod 2 .
\end{array}\right. \\
& \begin{array}{lllllllllll}
0 & 1 \\
1
\end{array} \\
& \hline
\end{aligned} \quad \begin{array}{lllllllllll}
0 & 3 & 2 & 1 & 0 & 2 & 3 & 4 & 1 & 0 & 5 \\
2 & 1 & 0 & 3 & 3 & 4 & 1 & 0 & 5 & 2 \\
1 & 0 & 3 & 2 & 4 & 1 & 0 & 5 & 2 & 3 \\
1 & 0 & 5 & 2 & 3 & 4
\end{array}
$$

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

A Latinon is a pair $L=(W, f)$ such that:

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

A Latinon is a pair $L=(W, f)$ such that:

- $W: \Omega^{2} \rightarrow \mathcal{P}$ is a measurable function;

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

A Latinon is a pair $L=(W, f)$ such that:

- $W: \Omega^{2} \rightarrow \mathcal{P}$ is a measurable function;
- $f: \Omega \rightarrow[0,1]$ is a measure preserving function;

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

A Latinon is a pair $L=(W, f)$ such that:

- $W: \Omega^{2} \rightarrow \mathcal{P}$ is a measurable function;
- $f: \Omega \rightarrow[0,1]$ is a measure preserving function;
- For almost every $s \in \Omega$ and for every measurable set $C \subset[0,1]$ we have

$$
\int_{t \in \Omega} W(s, t)(C) \mathrm{d} \mu=\lambda(C)=\int_{t \in \Omega} W(t, s)(C) \mathrm{d} \mu
$$

Limit objects - Latinons

Let Ω be an atomless separable probability space with measure μ and let \mathcal{P} be the space of Borel probability measures.

A Latinon is a pair $L=(W, f)$ such that:

- $W: \Omega^{2} \rightarrow \mathcal{P}$ is a measurable function;
- $f: \Omega \rightarrow[0,1]$ is a measure preserving function;
- For almost every $s \in \Omega$ and for every measurable set $C \subset[0,1]$ we have

$$
\int_{t \in \Omega} W(s, t)(C) \mathrm{d} \mu=\lambda(C)=\int_{t \in \Omega} W(t, s)(C) \mathrm{d} \mu
$$

Equivalently: $\left(\nu_{W}, f\right)$, where f is as above and ν_{W} is a probability measure on $\Omega^{2} \times[0,1]$ with uniform marginals related to the above definition via

$$
\nu_{W}(S \times T \times V)=\int_{S} \int_{T} W(x, y)(V) d x d y
$$

Limit objects - Latinons

Limit of the cyclic example

$$
L_{n}(i, j):=i+j \bmod n
$$

$\Omega=[0,1], f$ is the identity and $W:[0,1]^{2} \rightarrow \mathcal{P}$ is defined by

$$
W(x, y):=\operatorname{Dirac}(x+y \bmod 1)
$$

Limit objects - Latinons

Limit of the probabilistic example

$$
\begin{aligned}
& P_{n}(i, j):= \begin{cases}i+j \bmod n & \text { with probability } 1 / 2 \\
-i-j \bmod n & \text { with probability } 1 / 2\end{cases} \\
& \Omega=[0,1], f \text { is the identity and } W:[0,1]^{2} \rightarrow \mathcal{P} \text { is defined by } \\
& W(x, y):=\frac{1}{2} \operatorname{Dirac}(x+y \bmod 1)+\frac{1}{2} \operatorname{Dirac}(-x-y \bmod 1)
\end{aligned}
$$

Limit objects - Latinons

Limit of the odd-even example

$$
\begin{gathered}
H_{n}(i, j):=\left\{\begin{array}{lll}
i+j & \bmod n & \text { if } i+j \equiv 0 \\
-i-j & \bmod n & \text { if } i+j \equiv 1 \\
\bmod 2 .
\end{array}\right. \\
\Omega=[0,1] \times\{\text { odd, even }\}, \\
f:[0,1] \times\{\text { odd, even }\} \rightarrow[0,1],(x, a) \mapsto x
\end{gathered} \begin{aligned}
& W:([0,1] \times\{\text { odd, even }\})^{2} \rightarrow \mathcal{P} \text { is defined by } \\
& W((x, a),(y, b)):= \begin{cases}\operatorname{Dirac}(x+y & \bmod 1) \\
\operatorname{Dirac}(-x-y & \text { if } a=b\end{cases} \\
&
\end{aligned}
$$

Densities in Latinons

For a Latinon $L=(W, f)$, define $t(A, L):=\mathbb{P}\left(A^{*} \equiv A \mid\right.$ when a $k \times \ell$ matrix A^{*} is 'sampled' from $\left.(W, f)\right)$.

Densities in Latinons

For a Latinon $L=(W, f)$, define $t(A, L):=\mathbb{P}\left(A^{*} \equiv A \mid\right.$ when a $k \times \ell$ matrix A^{*} is 'sampled' from $\left.(W, f)\right)$.

Sampling: Select $\left(x_{1}, \ldots, x_{k}\right) \in \Omega^{k}$ and $\left(y_{1}, \ldots, y_{\ell}\right) \in \Omega^{\ell}$ with

$$
f\left(x_{1}\right)<f\left(x_{2}\right)<\cdots<f\left(x_{k}\right) \text { and } f\left(y_{1}\right)<f\left(y_{2}\right)<\cdots<f\left(y_{\ell}\right) \text { u.a.r. }
$$

Then sample $A_{i, j}^{*} \in[0,1]$ from the distribution $W\left(x_{i}, y_{j}\right)$.

Densities in Latinons

For a Latinon $L=(W, f)$, define $t(A, L):=\mathbb{P}\left(A^{*} \equiv A \mid\right.$ when a $k \times \ell$ matrix A^{*} is 'sampled' from $\left.(W, f)\right)$.

Sampling: Select $\left(x_{1}, \ldots, x_{k}\right) \in \Omega^{k}$ and $\left(y_{1}, \ldots, y_{\ell}\right) \in \Omega^{\ell}$ with

$$
f\left(x_{1}\right)<f\left(x_{2}\right)<\cdots<f\left(x_{k}\right) \text { and } f\left(y_{1}\right)<f\left(y_{2}\right)<\cdots<f\left(y_{\ell}\right) \text { u.a.r. }
$$

Then sample $A_{i, j}^{*} \in[0,1]$ from the distribution $W\left(x_{i}, y_{j}\right)$.

$$
\begin{aligned}
& \text { Example } \\
& \text { For } A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text {, } \\
& t(A,(W, f))=\frac{1}{6} \text {. }
\end{aligned}
$$

Densities in Latinons

For a matrix $A \in \mathbb{R}^{k \times \ell}$ we set

$$
\mathcal{R}^{A}([0,1]):=\left\{M \in[0,1]^{k \times \ell} \mid M \equiv A\right\}
$$

Densities in Latinons

For a matrix $A \in \mathbb{R}^{k \times \ell}$ we set

$$
\mathcal{R}^{A}([0,1]):=\left\{M \in[0,1]^{k \times \ell} \mid M \equiv A\right\}
$$

Densities in Latinons

Let (W, f) be a Latinon and $A \in \mathbb{R}^{k \times \ell}$. We denote by $t(A,(W, f))$ the density of the pattern A in (W, f) and define it to be

$$
\begin{aligned}
& t(A,(W, f)):= \\
& k!\ell!\int_{\mathbf{x} \in[0,1]_{<_{f}}^{k}} \int_{\mathbf{y} \in[0,1]_{<_{f}}^{\ell}}\left(\bigotimes_{(i, j) \in[k] \times[\ell]} W\left(x_{i}, y_{j}\right)\right)\left(\mathcal{R}^{A}([0,1])\right) d y d x .
\end{aligned}
$$

Limit theories of discrete structures

(F1) Finite discrete structures and substructures together with a notion of density $t(\cdot, \cdot)$. (E.g. homomorphism density in graphs.)
(F2) Left-convergence: A sequence of structures $\left(S_{n}\right)$ is left-convergent if $\left(t\left(H, S_{n}\right)\right)$ converges for every finite substructure H.
(F3) Limit objects: We define a space of analytic limits objects and the notion of density is extended to those limit objects. (Graphons.)
(F4) Compactness: Every sequence of structures contains a subsequence converging to a limit object. (Lovász-Szegedy '06.)
(F5) Denseness: For every limit object there exists a converging sequence of discrete structures. (W-random graphs.)
(F6) Equivalence of local and global: There is another 'global' metric generating the same topology as left-convergence. (Cut-distance.)

Compactness theorem

Let $\left(L_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Latin squares or Latinons, and let (W, f) be a Latinon. We say $L_{n} \rightarrow(W, f)$ if $\lim _{n \rightarrow \infty} t\left(A, L_{n}\right)=t(A,(W, f))$ for every $k, \ell \in \mathbb{N}$ and $k \times \ell$ pattern A.

Compactness theorem

Let $\left(L_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Latin squares or Latinons, and let (W, f) be a Latinon. We say $L_{n} \rightarrow(W, f)$ if $\lim _{n \rightarrow \infty} t\left(A, L_{n}\right)=t(A,(W, f))$ for every $k, \ell \in \mathbb{N}$ and $k \times \ell$ pattern A.

Compactness for Latinons (G., Hancock, Hladký, Sharifzadeh, 20^{+})
Let $\left(L_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Latinons. There exists a subsequence $\left(L_{n_{i}}\right)_{i \in \mathbb{N}}$ and a Latinon (W, f) such that

$$
L_{n_{i}} \rightarrow(W, f) .
$$

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

$$
d_{\square}(U, W)=\|U-W\|_{\square}=\sup _{S, T \subseteq \Omega}\left|\int_{S \times T}(U-W)(x, y) d x d y\right| .
$$

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

$$
d_{\square}(U, W)=\|U-W\|_{\square}=\sup _{S, T \subseteq \Omega}\left|\int_{S \times T}(U-W)(x, y) d x d y\right| .
$$

We can define a metric $\delta_{\square}^{\mathbb{N}}$ on $\mathcal{W}_{0}^{\mathbb{N}}$ by setting

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

$$
d_{\square}(U, W)=\|U-W\|_{\square}=\sup _{S, T \subseteq \Omega}\left|\int_{S \times T}(U-W)(x, y) d x d y\right|
$$

We can define a metric $\delta_{\square}^{\mathbb{N}}$ on $\mathcal{W}_{0}^{\mathbb{N}}$ by setting

$$
\delta_{\square}^{\mathbb{N}}\left(\left(U_{n}\right)_{n \in \mathbb{N}},\left(W_{n}\right)_{n \in \mathbb{N}}\right)=\inf _{\varphi: \Omega \rightarrow \Omega} \sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{\square}\left(U_{n}, W_{n}^{\varphi}\right),
$$

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

$$
d_{\square}(U, W)=\|U-W\|_{\square}=\sup _{S, T \subseteq \Omega}\left|\int_{S \times T}(U-W)(x, y) d x d y\right|
$$

We can define a metric $\delta_{\square}^{\mathbb{N}}$ on $\mathcal{W}_{0}^{\mathbb{N}}$ by setting

$$
\delta_{\square}^{\mathbb{N}}\left(\left(U_{n}\right)_{n \in \mathbb{N}},\left(W_{n}\right)_{n \in \mathbb{N}}\right)=\inf _{\varphi: \Omega \rightarrow \Omega} \sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{\square}\left(U_{n}, W_{n}^{\varphi}\right),
$$

Generalised compactness for graphons (~ Lovász-Szegedy '06) $\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right)$ is compact.

Proof of compactness: preparation

\mathcal{W}_{0} : space of measurable, not necessarily symmetric, functions $\Omega^{2} \rightarrow[0,1]$

$$
d_{\square}(U, W)=\|U-W\|_{\square}=\sup _{S, T \subseteq \Omega}\left|\int_{S \times T}(U-W)(x, y) d x d y\right| .
$$

We can define a metric $\delta_{\square}^{\mathbb{N}}$ on $\mathcal{W}_{0}^{\mathbb{N}}$ by setting

$$
\delta_{\square}^{\mathbb{N}}\left(\left(U_{n}\right)_{n \in \mathbb{N}},\left(W_{n}\right)_{n \in \mathbb{N}}\right)=\inf _{\varphi: \Omega \rightarrow \Omega} \sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{\square}\left(U_{n}, W_{n}^{\varphi}\right),
$$

Generalised compactness for graphons (~ Lovász-Szegedy '06)
$\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right)$ is compact.
(Not the compactness from Tychonoff's theorem.)

Proof of compactness: overview

We denote the metric space of Latinons by $\left(\mathcal{L}, \delta_{L}\right)$ and construct an injective function

Proof of compactness: overview

We denote the metric space of Latinons by $\left(\mathcal{L}, \delta_{L}\right)$ and construct an injective function

$$
\iota:\left(\mathcal{L}, \delta_{L}\right) \rightarrow\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right), L \mapsto \mathbf{L}^{\mathbb{N}}
$$

Proof of compactness: overview

We denote the metric space of Latinons by $\left(\mathcal{L}, \delta_{L}\right)$ and construct an injective function

$$
\iota:\left(\mathcal{L}, \delta_{L}\right) \rightarrow\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right), L \mapsto \mathbf{L}^{\mathbb{N}}
$$

(1) $\left(\iota(\mathcal{L}), \delta_{\square}^{\mathbb{N}}\right)$ is compact,

Proof of compactness: overview

We denote the metric space of Latinons by $\left(\mathcal{L}, \delta_{L}\right)$ and construct an injective function

$$
\iota:\left(\mathcal{L}, \delta_{L}\right) \rightarrow\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right), L \mapsto \mathbf{L}^{\mathbb{N}}
$$

(1) $\left(\iota(\mathcal{L}), \delta_{\square}^{\mathbb{N}}\right)$ is compact,
(2) $\iota^{-1}:\left(\iota(\mathcal{L}), \delta_{\square}^{\mathbb{N}}\right) \rightarrow\left(\mathcal{L}, \delta_{L}\right)$ is continuous.

Proof of compactness: overview

We denote the metric space of Latinons by $\left(\mathcal{L}, \delta_{L}\right)$ and construct an injective function

$$
\iota:\left(\mathcal{L}, \delta_{L}\right) \rightarrow\left(\mathcal{W}_{0}^{\mathbb{N}}, \delta_{\square}^{\mathbb{N}}\right), L \mapsto \mathbf{L}^{\mathbb{N}}
$$

(1) $\left(\iota(\mathcal{L}), \delta_{\square}^{\mathbb{N}}\right)$ is compact,
(2) $\iota^{-1}:\left(\iota(\mathcal{L}), \delta_{\square}^{\mathbb{N}}\right) \rightarrow\left(\mathcal{L}, \delta_{L}\right)$ is continuous.

Continuous image of compact space is compact, hence $\iota^{-1}(\iota(\mathcal{L}))=\mathcal{L}$ is compact.

Proof method - Compressions of Latinons

Let (W, f) be a Latinon.

Proof method - Compressions of Latinons

Let (W, f) be a Latinon.

- Partition $[0,1)=J_{d, 1} \cup \cdots \cup J_{d, 2^{d}}$, where $J_{d, s}:=\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)$.

Proof method - Compressions of Latinons

Let (W, f) be a Latinon.

- Partition $[0,1)=J_{d, 1} \cup \cdots \cup J_{d, 2^{d}}$, where $J_{d, s}:=\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)$.
- Define $W_{d, s}: \Omega^{2} \rightarrow[0,1]$ by $W_{d, s}(x, y):=W(x, y)\left(J_{d, s}\right)$;

Proof method - Compressions of Latinons

Let (W, f) be a Latinon.

- Partition $[0,1)=J_{d, 1} \cup \cdots \cup J_{d, 2^{d}}$, where $J_{d, s}:=\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)$.
- Define $W_{d, s}: \Omega^{2} \rightarrow[0,1]$ by $W_{d, s}(x, y):=W(x, y)\left(J_{d, s}\right)$;
- and $O^{f}: \Omega^{2} \rightarrow[0,1]$ by $O^{f}(x, y)=\left\{\begin{array}{ll}1 & \text { if } f(x)<f(y) \\ 0 & \text { otherwise }\end{array}\right.$.

Proof method - Compressions of Latinons

Let (W, f) be a Latinon.

- Partition $[0,1)=J_{d, 1} \cup \cdots \cup J_{d, 2^{d}}$, where $J_{d, s}:=\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)$.
- Define $W_{d, s}: \Omega^{2} \rightarrow[0,1]$ by $W_{d, s}(x, y):=W(x, y)\left(J_{d, s}\right)$;
- and $O^{f}: \Omega^{2} \rightarrow[0,1]$ by $O^{f}(x, y)=\left\{\begin{array}{ll}1 & \text { if } f(x)<f(y) \\ 0 & \text { otherwise }\end{array}\right.$.
- Define compression $\iota((W, f)):=\left(O^{f}, W_{1,1}, W_{1,2}, \ldots\right)$.

Proof method - Compressions of Latinons

$$
W(x, y)=\operatorname{Dirac}(x+y \bmod 1)
$$

Proof method - Compressions of Latinons

$$
W(x, y)=\operatorname{Dirac}(x+y \bmod 1)
$$

$$
W_{d, s}(x, y)=W(x, y)\left(\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)\right)= \begin{cases}1 & \text { if }(x+y \bmod 1) \in J_{d, s} \\ 0 & \text { otherwise }\end{cases}
$$

Proof method - Compressions of Latinons

$$
W(x, y)=\operatorname{Dirac}(x+y \bmod 1)
$$

$$
W_{d, s}(x, y)=W(x, y)\left(\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)\right)= \begin{cases}1 & \text { if }(x+y \bmod 1) \in J_{d, s} \\ 0 & \text { otherwise }\end{cases}
$$

Figure: $W_{1,1}$ and $W_{1,2}$

Proof method - Compressions of Latinons

$$
W(x, y)=\operatorname{Dirac}(x+y \bmod 1)
$$

$$
W_{d, s}(x, y)=W(x, y)\left(\left[\frac{s-1}{2^{d}}, \frac{s}{2^{d}}\right)\right)= \begin{cases}1 & \text { if }(x+y \bmod 1) \in J_{d, s} \\ 0 & \text { otherwise }\end{cases}
$$

Figure: $W_{2,1}, W_{2,2}, W_{2,3}, W_{2,4}$
Figure: $W_{1,1}$ and $W_{1,2}$

Cut-distance for Latinons

Cut-distance for graphons W and U
$\delta_{\square}(W, U):=\inf _{\varphi \in S_{[0,1]}}\left\|W-U^{\varphi}\right\|_{\square}$ where
$\left\|W-U^{\varphi}\right\|_{\square}:=\sup _{S, T \subseteq[0,1]}\left|\int_{S \times T} W(x, y)-U(\varphi(x), \varphi(y)) d y d x\right|$.

Cut-distance for Latinons

Cut-distance for graphons W and U
$\delta_{\square}(W, U):=\inf _{\varphi \in S_{[0,1]}}\left\|W-U^{\varphi}\right\|_{\square}$ where
$\left\|W-U^{\varphi}\right\|_{\square}:=\sup _{S, T \subseteq[0,1]}\left|\int_{S \times T} W(x, y)-U(\varphi(x), \varphi(y)) d y d x\right|$.

Cut-distance for Latinons $L_{1}=(W, f)$ and $L_{2}=(U, g)$

$$
\delta_{L}\left(L_{1}, L_{2}\right):=\inf _{\varphi, \psi \in S_{\Omega}}\left(\left\|W-U^{\varphi, \psi}\right\|_{L}+\left\|O^{f}-O^{g \circ \varphi}\right\|_{\square}+\left\|O^{f}-O^{g \circ \psi}\right\|_{\square}\right)
$$

where $O: \Omega^{2} \rightarrow[0,1]$ is a graphon s.t. $O(x, y):=\left\{\begin{array}{l}1, x<y, \\ 0, \text { otherwise } ;\end{array}\right.$

$$
\left\|W-U^{\varphi, \psi}\right\|_{L}:=\sup _{\substack{R, C \subset \Omega, V \subseteq[0,1] \text { interval }}}\left|\int_{x \in R} \int_{y \in C} W(x, y)(V)-U(\varphi(x), \psi(y))(V) d y d x\right| .
$$

Motivation for the cut-distance

$$
\left.\begin{array}{rl}
L_{n}(i, j): & =\left\{\begin{array}{lll}
i+j \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
-i-j & \bmod n & \text { if } i+j \equiv 1
\end{array} \bmod 2 .\right.
\end{array}\right\} \begin{array}{lll}
-i-j \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
i+j \bmod n & \text { if } i+j \equiv 1 & \bmod 2 .
\end{array}
$$

Motivation for the cut-distance

$$
\begin{aligned}
& L_{n}(i, j):=\left\{\begin{array}{lllllllll}
i+j & \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
-i-j & \bmod n & \text { if } i+j \equiv 1 & \bmod 2 .
\end{array}\right. \\
& L_{n}^{\prime}(i, j):=\left\{\begin{array}{llllllllll}
-i-j & \bmod n & \text { if } i+j \equiv 0 & \bmod 2, \\
i+j & \bmod n & \text { if } i+j \equiv 1 & \bmod 2 .
\end{array}\right. \\
& \begin{array}{llllllllllll}
0 & 5 & 2 & 3 & 4 & 1 & 0 & 1 & 4 & 3 & 2 & 5 \\
5 & 2 & 3 & 4 & 1 & 0 & 1 & 4 & 3 & 2 & 5 & 0 \\
2 & 3 & 4 & 1 & 0 & 5 & 4 & 3 & 2 & 5 & 0 & 1 \\
3 & 4 & 1 & 0 & 5 & 2 & 3 & 2 & 5 & 0 & 1 & 4 \\
4 & 1 & 0 & 5 & 2 & 3 & 2 & 5 & 0 & 1 & 4 & 3 \\
1 & 0 & 5 & 2 & 3 & 4 & 5 & 0 & 1 & 4 & 3 & 2
\end{array}
\end{aligned}
$$

Equivalence of local and global

Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20^{+})

Let $k, \ell \in \mathbb{N}$. Then there exists a constant $c_{k, \ell}$ such that for every $d \in \mathbb{N}$, Latinons L_{1}, L_{2} and $k \times \ell$ pattern A we have

$$
\left|t\left(A, L_{1}\right)-t\left(A, L_{2}\right)\right|<c_{k, \ell} \delta_{L}\left(L_{1}, L_{2}\right)^{1 /(2 k \ell)} .
$$

Equivalence of local and global

Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20^{+})
Let $k, \ell \in \mathbb{N}$. Then there exists a constant $c_{k, \ell}$ such that for every $d \in \mathbb{N}$, Latinons L_{1}, L_{2} and $k \times \ell$ pattern A we have

$$
\left|t\left(A, L_{1}\right)-t\left(A, L_{2}\right)\right|<c_{k, \ell} \delta_{L}\left(L_{1}, L_{2}\right)^{1 /(2 k \ell)} .
$$

Inverse Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20^{+})
For every $\delta>0$ there exist $k \in \mathbb{N}$ and $\varepsilon>0$ such that for every two Latinons L_{1} and L_{2} with $\delta_{L}\left(L_{1}, L_{2}\right)>\delta$ there exists a $k \times k$ pattern A such that

$$
\left|t\left(A, L_{1}\right)-t\left(A, L_{2}\right)\right|>\varepsilon .
$$

Equivalence of local and global

Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20^{+})
Let $k, \ell \in \mathbb{N}$. Then there exists a constant $c_{k, \ell}$ such that for every $d \in \mathbb{N}$, Latinons L_{1}, L_{2} and $k \times \ell$ pattern A we have

$$
\left|t\left(A, L_{1}\right)-t\left(A, L_{2}\right)\right|<c_{k, \ell} \delta_{L}\left(L_{1}, L_{2}\right)^{1 /(2 k \ell)} .
$$

Inverse Counting Lemma (G., Hancock, Hladký, Sharifzadeh, 20^{+})
For every $\delta>0$ there exist $k \in \mathbb{N}$ and $\varepsilon>0$ such that for every two Latinons L_{1} and L_{2} with $\delta_{L}\left(L_{1}, L_{2}\right)>\delta$ there exists a $k \times k$ pattern A such that

$$
\left|t\left(A, L_{1}\right)-t\left(A, L_{2}\right)\right|>\varepsilon .
$$

Equivalence

Convergence w.r.t. densities $t(\cdot, \cdot) \Longleftrightarrow$ convergence w.r.t. cut-distance δ_{L}.

Minimality

Approximation (G., Hancock, Hladký, Sharifzadeh, 20^{+})
For each Latinon (W, f) there exists a sequence $\left(L_{n}\right)_{n \in \mathbb{N}}$ of finite Latin squares of growing orders such that

$$
L_{n} \rightarrow(W, f) .
$$

Proof idea - Rödl nibble + Keevash

(1) Approximate the Latinon by a step-Latinon which on each step is a constant multiple of the Lebesgue-measure.

Proof idea - Rödl nibble + Keevash

(1) Approximate the Latinon by a step-Latinon which on each step is a constant multiple of the Lebesgue-measure.
(2) A Latin square corresponds to a triangle decomposition of $K_{n, n, n}$.

Proof idea - Rödl nibble + Keevash

(1) Approximate the Latinon by a step-Latinon which on each step is a constant multiple of the Lebesgue-measure.
(2) A Latin square corresponds to a triangle decomposition of $K_{n, n, n}$.
(3) So use a weighted Rödl nibble using measures from (1) to produce an approximate triangle decomposition of $K_{n, n, n}$.

Proof idea - Rödl nibble + Keevash

(1) Approximate the Latinon by a step-Latinon which on each step is a constant multiple of the Lebesgue-measure.
(2) A Latin square corresponds to a triangle decomposition of $K_{n, n, n}$.
(3) So use a weighted Rödl nibble using measures from (1) to produce an approximate triangle decomposition of $K_{n, n, n}$.
(9) Use tools from Keevash's theory about designs to extend the approximate triangle decomposition (partial Latin square) to a triangle decomposition (complete Latin square).

Further Questions

- Král'-Pikhurko ('13): If P is a permuton and $d(\sigma, P)=\frac{1}{4!}$ for all $\sigma \in S_{4}$, then P is the two-dimensional Lesbesgue measure.

Further Questions

- Král'-Pikhurko ('13): If P is a permuton and $d(\sigma, P)=\frac{1}{4!}$ for all $\sigma \in S_{4}$, then P is the two-dimensional Lesbesgue measure.
- Question: Exist $k, \ell \in \mathbb{N}$ such that the follwing holds? If L is a Latinon and $t(A, L)=\frac{1}{(k \ell)!}$ for all $k \times \ell$ patterns A, then L is the three-dimensional Lebesgue measure.

Further Questions

- Král'-Pikhurko ('13): If P is a permuton and $d(\sigma, P)=\frac{1}{4!}$ for all $\sigma \in S_{4}$, then P is the two-dimensional Lesbesgue measure.
- Question: Exist $k, \ell \in \mathbb{N}$ such that the follwing holds? If L is a Latinon and $t(A, L)=\frac{1}{(k \ell)!}$ for all $k \times \ell$ patterns A, then L is the three-dimensional Lebesgue measure.
- Removal lemma: Given a $k \times \ell$ pattern A and a Latin square L, if $t(A, L)$ small, can we remove/change a small number of entries of L to get L^{\prime} with $t\left(A, L^{\prime}\right)=0$?

Further Questions

- Král'-Pikhurko ('13): If P is a permuton and $d(\sigma, P)=\frac{1}{4!}$ for all $\sigma \in S_{4}$, then P is the two-dimensional Lesbesgue measure.
- Question: Exist $k, \ell \in \mathbb{N}$ such that the follwing holds? If L is a Latinon and $t(A, L)=\frac{1}{(k \ell)!}$ for all $k \times \ell$ patterns A, then L is the three-dimensional Lebesgue measure.
- Removal lemma: Given a $k \times \ell$ pattern A and a Latin square L, if $t(A, L)$ small, can we remove/change a small number of entries of L to get L^{\prime} with $t\left(A, L^{\prime}\right)=0$?
- Quantification via entropy: Can one define the entropy of a Latinon L s.t. the number of Latin squares of order n close to L is counted by the entropy of L ?

Further Questions

- Král'-Pikhurko ('13): If P is a permuton and $d(\sigma, P)=\frac{1}{4!}$ for all $\sigma \in S_{4}$, then P is the two-dimensional Lesbesgue measure.
- Question: Exist $k, \ell \in \mathbb{N}$ such that the follwing holds? If L is a Latinon and $t(A, L)=\frac{1}{(k \ell)!}$ for all $k \times \ell$ patterns A, then L is the three-dimensional Lebesgue measure.
- Removal lemma: Given a $k \times \ell$ pattern A and a Latin square L, if $t(A, L)$ small, can we remove/change a small number of entries of L to get L^{\prime} with $t\left(A, L^{\prime}\right)=0$?
- Quantification via entropy: Can one define the entropy of a Latinon L s.t. the number of Latin squares of order n close to L is counted by the entropy of L ?

Thank you for listening.

