Entrance Examination - Mathematics

Jméno a příjmení - pište do okénka	Číslo přihlášky	Číslo zadání
		1

Sets, relations, functions, logic

1 For which of the following sets $A \subseteq \mathbb{Q}$ does the standard ordering \leq have the least element? (Here \mathbb{Z} denotes the set of all integers and \mathbb{Q} the set of all rational numbers.)

A $\quad A=\mathbb{Z}$
*B $\quad A=\{p \in \mathbb{Z} \mid p>0\}$
C $\quad A=\{p \in \mathbb{Q} \mid p>0\}$
D $\quad A=\{p \in \mathbb{Q} \mid p<0\}$
E $\quad A=\{p \in \mathbb{Z} \mid p<0\}$

2 Consider two arbitrary finite sets A and B and a surjective function $f: A \rightarrow B$. Which of the following statements is generally valid?

A $\quad|A|=|B|$
B $|A|>|B|$
${ }^{*} \mathbf{C} \quad|A| \geq|B|$
D $|A|<|B|$
E $\quad|A| \leq|B|$

3 Consider the predicate logic with equality and one unary function symbol f. Which of the following formulas is logically entailed by the formula $\exists x(x=f(f(x)))$?

A $\quad \exists y(f(y)=f(f(y)))$
B $\exists y(y=f(f(f(y))))$
*C $\quad \exists y(f(y)=f(f(f(y))))$
D $\exists y(y=f(y))$
$\mathbf{E} \quad \exists y(f(f(y))=f(f(f(y))))$

4 What is the number of elements of the set $\mathcal{P}(\{1,2,3\}) \cup \mathcal{P}(\{3,4\})$? (Here $\mathcal{P}(A)$ denotes the set of all subsets of A.)

A 12
B 9
C 8
*D 10
E 11

5 Which of the following propositional formulas is not satisfiable? (Here A, B denote distinct propositional variables.)

A $\quad(A \Rightarrow B) \wedge(B \Rightarrow \neg A)$
B $\quad(A \Leftrightarrow B) \wedge(B \Leftrightarrow A)$
C $\quad(A \Rightarrow B) \wedge(B \Rightarrow A)$
D $\quad(A \Rightarrow B) \wedge(A \Rightarrow \neg B)$
*E $\quad(A \Leftrightarrow B) \wedge(B \Leftrightarrow \neg A)$
6 Which of the following binary relations R on the set $\mathbb{Z} \times \mathbb{Z}$ of all pairs of integers is not an equivalence? (Equivalence is reflexive, symmetric, and transitive relation.)

A $\quad\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in R$ iff $a_{1}+b_{1}=a_{2}+b_{2}$
*B $\quad\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in R$ iff $a_{1}=a_{2}$ or $b_{1}=b_{2}$
C $\quad\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in R$ iff $\left(a_{1}\right)^{10}+3 b_{1}=\left(a_{2}\right)^{10}+3 b_{2}$
D $\quad\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in R$ iff $a_{1}=a_{2}$
E $\quad\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in R$ iff $a_{1}=a_{2}$ and $b_{1}=b_{2}$

Linear algebra

7 Which of the following mappings is not linear?
*A $\quad f(x, y)=x \cdot y$
B $\quad f(x, y)=x$
C $\quad f(x, y)=|-6| \cdot x-y$
D $\quad f(x, y)=1 \cdot x+0 \cdot y^{2}$
E $\quad f(x, y)=2^{2} \cdot x+\sqrt{3} \cdot y$
8 Determine the dimension of the subspace $U \subseteq \mathbb{R}^{3}$ generated by vectors $\mathbf{u}_{1}=(1,-1,0), \mathbf{u}_{2}=(0,1,-1), \mathbf{u}_{3}=$ $(-1,0,1)$. If vectors $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ form a basis of \mathbb{R}^{3}, also compute the coefficients of a vector $\mathbf{v}=(2,1,-3)$ in this basis.

A U has the dimension 3 and the coordinates of \mathbf{v} in the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ are $(1,4,-5)$.

B U has the dimension 2 and the coordinates of \mathbf{v} in the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ are $(1,2,-1)$.

C U has the dimension 3 and the coordinates of \mathbf{v} in the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ are $(3,4,1)$.

D U has the dimension 3 and the coordinates of \mathbf{v} in the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ are $(1,2,-1)$.
*E U has the dimension 2 and vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ do not form a basis of \mathbb{R}^{3}.

9 Consider the following system of equations over \mathbb{R} :

$$
\begin{array}{r}
x-y+2 z=1, \\
3 x+2 y-5 z=3, \\
7 x-2 y+3 z=7 .
\end{array}
$$

Which of the following statements is true?

A The system has infinitely many solutions and all solutions form a plane in \mathbb{R}^{3}.
*B The system has infinitely many solutions and all solutions form a line in \mathbb{R}^{3}.
C The system has no solution.
D The system has exactly one solution.
E All points of \mathbb{R}^{3} are solutions of the given system.

10 Let $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 7 & -2 \\ 1 & 5 & -5\end{array}\right)$.
Which of the following statements is true about the elements of the inverse matrix A^{-1} of the matrix A ?
*A All elements of A^{-1} are integers.
B All elements of A^{-1} are rational numbers and at least one element of A^{-1} is not an integer.
C All elements of A^{-1} are complex numbers and at least one element of A^{-1} is not a real number.
D The inverse matrix of A does not exist.
E All elements of A^{-1} are real numbers and at least one element of A^{-1} is not a rational number.

11 Compute $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{lll}-2 & -1 & 4\end{array}\right)$.

A (7)

B (5)

C None of the other answers is correct.

D The product of the matrices is not defined.
*E $\left(\begin{array}{ccc}-2 & -1 & 4 \\ 2 & 1 & -4 \\ -4 & -2 & 8\end{array}\right)$

Graph theory

12 Consider an arbitrary non-empty binary tree, in which each vertex is either a leaf or has exactly two children. Denote as l the number of its leaves and as v the number of its vertices which are not leaves. Which of the following holds in general?

A $\quad v^{2}=l$
B $\quad 2^{v}=l$
C $\quad v=l$

D None of the other answers.
*E $\quad v+1=l$
13 What is the number of pairwise non-isomorphic undirected graphs on 8 vertices, in which each vertex has degree 2?

A 2
B 1
*C 3
D 4
E 5
14 Consider the following directed graph:

What is the maximal possible number of vertices including the starting one, which can be discovered before the vertex d during the depth first search from the vertex a ? (We do not assume any ordering on the vertices. Therefore, the order in which the vertices are discovered during the search is not uniquely determined.)

A 5
B 2
C 4
D 1
*E 3
15 Consider the following weighted undirected graph G :

What is the weight (i.e., the sum of weights of all its edges) of the minimal spanning tree of the graph G ?

A 28
*B 30
C 34
D 35
E 32

16 Consider an arbitrary weighted directed graph G that contains at least two vertices between which there are at least two shortest paths (the length of a path is the sum of weights of all its edges). Which of the following holds in general?

A The graph G contains at least 4 distinct vertices.
B The graph G contains at least two distinct edges with the same weight.
*C The graph G contains at least 3 distinct edges.
D The graph G contains an edge with the weight 0 .
E There are at least two shortest paths between all pairs of vertices of the graph G.

Calculus

17 Compute the minimal value of the function
$\mathrm{e}^{x} \cdot\left(x^{2}-5 x+5\right)$
on the interval $[-1,4]$.

A $-\frac{5}{4} \cdot \mathrm{e}^{3}$
B 5

* $\mathbf{C} \quad-\mathrm{e}^{3}$

D 3
E 0

18 Consider the function $f(x)=\left(\sin \left(x^{2}\right)\right)^{2}$. Compute $f^{\prime}\left(\sqrt{\frac{\pi}{2}}\right)$.

A $\sqrt{2 \pi}$
B 2π

C 1

D $2 \cdot \sqrt{\pi}$
*E 0

19 The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by the formula $f(x)=\mathrm{e}^{x}-\mathrm{e}^{-x}$ is
*A odd and bijective
B odd, injective but not surjective
C even and bijective
D even, surjective but not injective
E even, injective but not surjective

20 Compute the limit $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+(\ln n)^{2}}$.
*A ∞
B The limit does not exist.
C 0

D 2
E 4
21 Compute $\int_{-\pi}^{\pi} x \cdot \cos x \mathrm{~d} x$.

A -2π
B $2 \pi-2$

C $\quad-2 \pi+2$
*D 0

E 2π

Probability

22 Consider the random variable X such that $P(X=1)=p, P(X=2)=\frac{1}{2}, P(X=6)=\left(\frac{1}{2}-p\right)$ and the probability is zero for the other values. For which of the following values of p is the expected value of the random variable X equal to 3 ?

A $\frac{1}{3}$
B $\frac{1}{4}$
C $\frac{2}{5}$
D $\frac{1}{2}$
*E $\frac{1}{5}$
23 Consider the data sample
$7,11,-7,9,5,0,2,3,0$.
Which of the following statements about the average and a median of this sample is true?

A The average is $\frac{30}{7}$, a median is 3 .
B The average is $\frac{10}{3}$, a median is 0 .
*C The average is $\frac{10}{3}$, a median is 3 .
D The average is $\frac{30}{7}$, a median is 5 .
E The average is $\frac{10}{3}$, a median is 5 .
24 Consider two discrete random variables X and Y. Their joint probability mass function depends on a parameter $p \in[0,1]$ and is given as follows:

$$
\begin{aligned}
& P(X=0, Y=0)=p / 2 \\
& P(X=0, Y=1)=(1-p) / 2 \\
& P(X=1, Y=0)=(1-p) / 2 \\
& P(X=1, Y=1)=p / 2
\end{aligned}
$$

Determine for how many different values of the parameter $p \in[0,1]$ are the random variables X and Y independent.

A 0 , i.e., the random variables X and Y are dependent for any value of $p \in[0,1]$.
B 3

C $\quad \infty$, i.e., the random variables X and Y are independent for infinitely many values of p.
*D 1

E 2
25 The probability that a given person wins a prize in a lottery is 50%. What is the probability that exactly two people from the family of four win a prize?

A $\frac{5}{8}$
B $\frac{1}{4}$
C $\frac{1}{2}$
*D $\frac{3}{8}$
E
$\frac{1}{8}$

