Entrance Examination - Mathematics

Name and Surname – fill in the field			Application No.	Test Sheet No.
				4
Set	ts, relations, functions, logic	3	Which of the following function of rational numbers satisfy () (Here $f \circ g$ denotes the continues, i.e. the function ($f \circ g$) and f^{-1} denotes the inverse of the in	ons f, g on the set $f \circ g \circ f^{-1})(1) = 1$? aposition of func- g)(x) = f(g(x)), of the function f .)
1	Consider an arbitrary relation R that is a par- tial order on a set A . Suppose that the ordered set (A, R) has exactly two maximal elements. Which of the following statements about the ordered set (A, R) is in general valid?	A	$f(x) = x/2, \ g(x) = x - 2$	
		*С	$f(x) = x - 1, \ g(x) = 2x$ $f(x) = x + 1, \ g(x) = 2x$	
		D	$f(x) = x, \ g(x) = 0$	
Α	The ordered set $\left(A,R\right)$ does not have any least element.	E	f(x) = x/2, $g(x) = x + 2$	
* B	The ordered set $\left(A,R\right)$ does not have any greatest element.	4	Which of the following bina the set of integers is not tra	ry relations R on nsitive?
С	The ordered set $\left(A,R\right)$ has one greatest element.	Α	$R(x,y) \iff x < y$	
D	The ordered set $\left(A,R\right)$ has one least element.	В	$R(x,y) \iff x \neq 3$	
Ε	The ordered set (A, R) has two greatest elements.	C	$R(x,y) \iff x = y$	
		D *E	$R(x,y) \iff x = 3$	
2 A	Which of the following propositional formulae is a tautology? (Here A , B are distinct propo- sitional variables.) $(A \Leftrightarrow B) \Rightarrow (A \land B)$	5	$R(x,y) \iff x \neq y$ Consider a first-order language predicate Z and an interpretation universe is the set of all performed by the person y''. Which first-order formulae correspondent formulae correspondent to the relation $Z(x, y)$ is interpreted to the person is known (Note that the relation $Z(x, y)$ is interpreted to the	age with a binary ation in which the eople and the re- as "the person x h of the following onds to the state- wn by someone"? y) is not symmet-
В	$(A \Leftrightarrow B) \Leftarrow (A \lor B)$	*Д	$\forall u \exists r Z(r, u)$	
С	$(A \Leftrightarrow B) \Rightarrow A$	В	$\exists x \forall y Z(x,y)$	
D	$(A \Leftrightarrow B) \Rightarrow (A \lor B)$	С	$\forall x \forall y Z(x,y)$	
* E	$(A \Leftrightarrow B) \Leftarrow (A \land B)$	D	$\forall x \exists y Z(x,y)$	

 $\mathbf{E} \quad \exists y \, \forall x \, Z(x,y)$

6 A B *C D E	How many elements are in the set $(\{1,2,3,4\} \cup \{2,4,8\}) \setminus \{1,2,42\}$? (Here $A \setminus B$ denotes the set difference of sets A and B .) 1 2 3 5 4	8 A B	Consider the following system of equations over \mathbb{R} : x + 2y + 3z = 4, 2x - y - 7z = 10, x - 2y - 4z = 9. Which of the following statements is true? All points of \mathbb{R}^3 are solutions of the given system. The system has infinitely many solutions and
 T in		C D *E	all solutions form a line in \mathbb{R}^3 . The system has infinitely many solutions and all solutions form a plane in \mathbb{R}^3 . The system has no solution. The system has exactly one solution.
	Compute the product $A^{-1} \cdot \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix}$, where $A = \begin{pmatrix} 5 & -4 & -2 \\ 2 & -1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$. $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 28 \\ -22 \\ -10 \end{pmatrix}$ $(-8 \ 14 \ 8)$ $\begin{pmatrix} 8 \\ 4 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$	9 *A B C D E	Determine which of the following matrices corresponds to the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$, where φ is an orthogonal pro- jection onto the plane given by x and z axes. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

- **10** Consider the vector (1,3,-1) in the basis [(1,0,1), (0,1,2), (1,1,1)]. Find its coordinates in the basis [(2,1,0), (2,1,2), (-1,0,1)].
- ***A** (1,1,4)
- **B** (-2, 2, 10)
- C (11, 2, 5)
- **D** (3, -2, 6)
- E (-12, -4, 2)

11 Compute $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -2 \\ -2 & -1 & 4 \\ -1 & -1 & 3 \end{pmatrix}$.

- $\mathbf{A} \quad \begin{pmatrix} 6 & -4 & -15 \\ 0 & 0 & 0 \end{pmatrix}$
- ${\bf B} \quad {\rm None \ of \ the \ other \ answers \ is \ correct.}$
- $\mathbf{C} \quad \begin{pmatrix} -4 & 3\\ 7 & -5\\ 6 & -3 \end{pmatrix}$
- $*\mathbf{D} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- **E** The product of the given matrices is not defined.

Graph theory

- **12** Let G be an arbitrary undirected graph with 8 vertices. What is the smallest number n such the statement "if the graph G has at least n edges, it contains a cycle" holds in general?
- **A** 9
- **B** 7
- **C** 36
- **D** 1
- ***E** 8

13 Consider the following weighted undirected graph *G*:

How many distinct minimal spanning trees of G exist?

- **A** 4
- **B** 3
- **C** 2
- ***D** 8 **E** 1

- **14** How many edges are there in the complete undirected graph with n vertices, i.e. the graph K_n ?
- **A** n 1
- **B** $n \cdot (n-1)$

*C
$$\frac{n \cdot (n-1)}{2}$$

- \mathbf{D} n^2
- **E** n

- **15** Consider the following directed graph: **17** Let $f \colon \mathbb{R} \to \mathbb{R}$ be a function, $a, b \in \mathbb{R}$, a < b. Consider the following statements D, I, S: ch • D: *f* has a finite first derivative on [*a*, *b*], • I: the integral $\int_a^b f(x) dx$ exists and it is fidanite, • S: the function *f* is continuous on [*a*, *b*]. Which of the following pair of implications is generally valid? Choose from the following statements the one that is in general valid about the depth-first search of this graph starting in the vertex *a*. $D \Rightarrow I \text{ and } I \Rightarrow S$ Α (We do not assume any particular ordering of vertices. The order in which the vertices $S \Rightarrow D \text{ and } D \Rightarrow I$ В are discovered during the depth-first search is therefore not uniquely determined.) С $S \Rightarrow I \text{ and } I \Rightarrow D$ $I \Rightarrow D \text{ and } D \Rightarrow S$ D А The vertex f can be discovered as the last one. ***E** $D \Rightarrow S$ and $S \Rightarrow I$ The vertex d must be discovered as the last В one. **18** The function $f : \mathbb{R} \to \mathbb{R}$ given by the formula С The vertex *b* must be discovered before the $f(x) = \begin{cases} \ln x & x \ge 1, \\ x - 1 & x \le 1 \end{cases}$ vertex c. *D The vertex *f* must be discovered before the is: vertex d. Ε The vertex c can be discovered before the ver-Α surjective, but not injective tex e. В even or odd *C bijective D injective, but not surjective 16 Consider the undirected cycle graph with 4 vertices, i.e. the graph C_4 . How many pair-Ε incorrectly defined for x = 1wise non-isomorphic subgraphs with 4 vertices of C_4 exist? **19** Compute the limit $\lim_{n\to\infty} \frac{n}{(\ln n)^3}$. 8 Α 7 В С 5 4 D А 1 *E 6 The limit does not exist. В
- Calculus

D 0

 $\overline{6}$

С

*E ∞

20 Consider the function $f(x) = \ln(\cos x)$. Com-	23 Consider a random variable X with the range		
pute $f(\pi/6)$.	-1 and 1 and the expected value $\frac{1}{2}$. Compute the variance of the random variable X		
$\mathbf{A} = \frac{2}{\overline{}}$			
$\sqrt{3}$ B $-\frac{\pi}{}$	A The variance cannot be determined unambiguously from the given values.		
$\frac{12}{\sqrt{3}}$	9		
$\mathbf{C} = \frac{\sqrt{3}}{3}$	*B $\frac{5}{4}$		
* D $-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$		
$\mathbf{E} = \frac{\pi}{12}$			
	$\mathbf{D} \frac{1}{4}$		
21 Compute the integral $\int_{1}^{2} \left(\frac{1}{x^{2}} + x^{3}\right) dx$.	$\mathbf{E} \frac{1}{2}$		
A $\frac{11}{2}$			
$\mathbf{B} = \frac{27}{4}$			
*C $\frac{4}{17}$			
4 D 6			
F ¹³			
4	24 A group of 30 athletes arrived at a tournament. How many possibilities are there to divide the group to 3 teams of 10 members each?		
Probability			
	A $\frac{30!}{(10!)^3}$		
22 Let us have two random events <i>A</i> and <i>B</i> . When are these two events stochastically independent?	B 30!		
	c $\frac{30!}{3!}$		
A If and only if $P(A \cup B) = 1$.	30!		
*B If and only if $P(A) \cdot P(B) = P(A \cap B)$.	*D $\frac{3! \cdot (10!)^3}{3! \cdot (10!)^3}$		
C If and only if $P(A \cap B) = 0$.	E None of the other answers is correct.		
D If and only if $P(A) \cdot P(B) = 0$.			
E If and only if $P(A) \neq P(B)$.			

