Entrance Examination - Mathematics

Name and Surname - fill in the field	Application No.	Test Sheet No.
		$4 \mathbf{4}$

Sets, relations, functions, logic

1 Consider an arbitrary relation R that is a partial order on a set A. Suppose that the ordered set (A, R) has exactly two maximal elements. Which of the following statements about the ordered set (A, R) is in general valid?

A The ordered set (A, R) does not have any least element.
*B The ordered set (A, R) does not have any greatest element.

C The ordered set (A, R) has one greatest element.

D The ordered set (A, R) has one least element.
E The ordered set (A, R) has two greatest elements.

2 Which of the following propositional formulae is a tautology? (Here A, B are distinct propositional variables.)

A $\quad(A \Leftrightarrow B) \Rightarrow(A \wedge B)$
B $\quad(A \Leftrightarrow B) \Leftarrow(A \vee B)$
C $\quad(A \Leftrightarrow B) \Rightarrow A$
D $\quad(A \Leftrightarrow B) \Rightarrow(A \vee B)$
*E $\quad(A \Leftrightarrow B) \Leftarrow(A \wedge B)$

3 Which of the following functions f, g on the set of rational numbers satisfy $\left(f \circ g \circ f^{-1}\right)(1)=1$? (Here $f \circ g$ denotes the composition of functions, i.e. the function $(f \circ g)(x)=f(g(x))$, and f^{-1} denotes the inverse of the function f.)

A $\quad f(x)=x / 2, g(x)=x-2$
B $\quad f(x)=x-1, g(x)=2 x$

* $\mathbf{C} \quad f(x)=x+1, g(x)=2 x$

D $\quad f(x)=x, g(x)=0$
E $\quad f(x)=x / 2, g(x)=x+2$
4 Which of the following binary relations R on the set of integers is not transitive?

A $\quad R(x, y) \Longleftrightarrow x<y$
B $\quad R(x, y) \Longleftrightarrow x \neq 3$
C $\quad R(x, y) \Longleftrightarrow x=y$
D $\quad R(x, y) \Longleftrightarrow x=3$
*E $\quad R(x, y) \Longleftrightarrow x \neq y$
5 Consider a first-order language with a binary predicate Z and an intepretation in which the universe is the set of all people and the relation $Z(x, y)$ is interpreted as "the person x knows the person y ". Which of the following first-order formulae corresponds to the statement "every person is known by someone"? (Note that the relation $Z(x, y)$ is not symmetric.)

* $\mathbf{A} \quad \forall y \exists x Z(x, y)$

B $\exists x \forall y Z(x, y)$
C $\forall x \forall y Z(x, y)$
D $\forall x \exists y Z(x, y)$

E $\quad \exists y \forall x Z(x, y)$

6 How many elements are in the set

$$
(\{1,2,3,4\} \cup\{2,4,8\}) \backslash\{1,2,42\} ?
$$

(Here $A \backslash B$ denotes the set difference of sets A and B.)

A 1
B 2
*C 3
D 5
E 4

Linear algebra

7 Compute the product $A^{-1} \cdot\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$, where $A=$

$$
\left(\begin{array}{ccc}
5 & -4 & -2 \\
2 & -1 & -1 \\
2 & -2 & 0
\end{array}\right)
$$

* $\mathbf{A}\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$

B $\left(\begin{array}{c}28 \\ -22 \\ -10\end{array}\right)$
C $\quad\left(\begin{array}{lll}-8 & 14 & 8\end{array}\right)$
D $\left(\begin{array}{l}8 \\ 4 \\ 4\end{array}\right)$
E $\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$

8 Consider the following system of equations over \mathbb{R} :
$x+2 y+3 z=4$,
$2 x-y-7 z=10$,
$x-2 y-4 z=9$.
Which of the following statements is true?

A All points of \mathbb{R}^{3} are solutions of the given system.

B The system has infinitely many solutions and all solutions form a line in \mathbb{R}^{3}.

C The system has infinitely many solutions and all solutions form a plane in \mathbb{R}^{3}.

D The system has no solution.
*E The system has exactly one solution.

9 Determine which of the following matrices corresponds to the linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where φ is an orthogonal projection onto the plane given by x and z axes.

* $\mathbf{A}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

B $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
C $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
D $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
E $\quad\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$

10 Consider the vector $(1,3,-1)$ in the basis $[(1,0,1),(0,1,2),(1,1,1)]$. Find its coordinates in the basis $[(2,1,0),(2,1,2),(-1,0,1)]$.
*A $\quad(1,1,4)$
B $(-2,2,10)$
C $(11,2,5)$
D $(3,-2,6)$
E $(-12,-4,2)$

11 Compute $\left(\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 0\end{array}\right) \cdot\left(\begin{array}{ccc}1 & 1 & -2 \\ -2 & -1 & 4 \\ -1 & -1 & 3\end{array}\right)$.

A $\quad\left(\begin{array}{ccc}6 & -4 & -15 \\ 0 & 0 & 0\end{array}\right)$

B None of the other answers is correct.

C $\quad\left(\begin{array}{cc}-4 & 3 \\ 7 & -5 \\ 6 & -3\end{array}\right)$

* $\mathbf{D}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

E The product of the given matrices is not defined.

Graph theory

12 Let G be an arbitrary undirected graph with 8 vertices. What is the smallest number n such the statement "if the graph G has at least n edges, it contains a cycle" holds in general?

A 9
B 7
C 36
D 1
*E 8

13 Consider the following weighted undirected graph G :

How many distinct minimal spanning trees of G exist?

A 4
B 3
C 2
*D 8
E 1

14 How many edges are there in the complete undirected graph with n vertices, i.e. the graph K_{n} ?

A $n-1$
B $n \cdot(n-1)$

* $\mathbf{C} \quad \frac{n \cdot(n-1)}{2}$

D n^{2}

E n

15 Consider the following directed graph:

Choose from the following statements the one that is in general valid about the depth-first search of this graph starting in the vertex a. (We do not assume any particular ordering of vertices. The order in which the vertices are discovered during the depth-first search is therefore not uniquely determined.)

A The vertex f can be discovered as the last one.
B The vertex d must be discovered as the last one.

C The vertex b must be discovered before the vertex c.
*D The vertex f must be discovered before the vertex d.

E The vertex c can be discovered before the vertex e.

16 Consider the undirected cycle graph with 4 vertices, i.e. the graph C_{4}. How many pairwise non-isomorphic subgraphs with 4 vertices of C_{4} exist?

A 8
B 7
C 5
D 4
*E 6

Calculus

17 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, $a, b \in \mathbb{R}, a<b$. Consider the following statements D, I, S:

- D: f has a finite first derivative on $[a, b]$,
- I: the integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists and it is finite,
- S: the function f is continuous on $[a, b]$.

Which of the following pair of implications is generally valid?

A $\mathrm{D} \Rightarrow \mathrm{I}$ and $\mathrm{I} \Rightarrow \mathrm{S}$
B $\mathrm{S} \Rightarrow \mathrm{D}$ and $\mathrm{D} \Rightarrow \mathrm{I}$
C $\mathrm{S} \Rightarrow \mathrm{I}$ and $\mathrm{I} \Rightarrow \mathrm{D}$
D $\mathrm{I} \Rightarrow \mathrm{D}$ and $\mathrm{D} \Rightarrow \mathrm{S}$
*E $\quad \mathrm{D} \Rightarrow \mathrm{S}$ and $\mathrm{S} \Rightarrow \mathrm{I}$

18 The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by the formula $f(x)= \begin{cases}\ln x & x \geq 1, \\ x-1 & x \leq 1\end{cases}$
is:

A surjective, but not injective
B even or odd
*C bijective
D injective, but not surjective
E incorrectly defined for $x=1$

19 Compute the limit $\lim _{n \rightarrow \infty} \frac{n}{(\ln n)^{3}}$.

A 1
B The limit does not exist.
C $\frac{1}{6}$
D 0
*E $\quad \infty$

20 Consider the function $f(x)=\ln (\cos x)$. Compute $f^{\prime}(\pi / 6)$.

A $\frac{2}{\sqrt{3}}$
B $-\frac{\pi}{12}$
C $\frac{\sqrt{3}}{3}$
*D $-\frac{\sqrt{3}}{3}$
E $\frac{\pi}{12}$

21 Compute the integral $\int_{1}^{2}\left(\frac{1}{x^{2}}+x^{3}\right) \mathrm{d} x$.

A $\frac{11}{2}$
B $\frac{27}{4}$
*C $\frac{17}{4}$
D 6
E $\frac{13}{4}$

Probability

22 Let us have two random events A and B. When are these two events stochastically independent?

A If and only if $P(A \cup B)=1$.
*B If and only if $P(A) \cdot P(B)=P(A \cap B)$.
C If and only if $P(A \cap B)=0$.
D If and only if $P(A) \cdot P(B)=0$.
E If and only if $P(A) \neq P(B)$.

23 Consider a random variable X with the range -1 and 1 and the expected value $\frac{1}{2}$. Compute the variance of the random variable X.

A The variance cannot be determined unambiguously from the given values.
*B $\frac{3}{4}$
C $-\frac{1}{2}$
D $\frac{1}{4}$

E $\frac{1}{2}$

24 A group of 30 athletes arrived at a tournament. How many possibilities are there to divide the group to 3 teams of 10 members each?

A $\frac{30!}{(10!)^{3}}$

B 30 !

C $\frac{30!}{3!}$
*D $\frac{30!}{3!\cdot(10!)^{3}}$

E None of the other answers is correct.

25 Consider a standard six-sided dice for which each result of the toss has the same probability. Further, consider the following game: we toss the dice once; if the result is 5 or 6 , the game ends, otherwise we toss again and then the game ends. What is the probability that some toss during the game will come out with value 5 or 6 ?

A $\frac{4}{9}$
B $\frac{2}{3}$
*C $\quad \frac{5}{9}$
D $\frac{1}{3}$
E $\frac{1}{2}$

