Entrance Examination - Mathematics

Name and Surname - fill in the field	Application No.	Test Sheet No.
		2

Sets, relations, functions, logic

1 Which of the following relations on the set $\{a, b, c\}$ is not a subset of any order relation on the set $\{a, b, c\}$? (Order is a reflexive, antisymmetric and transitive relation.)

A $\{(a, a),(b, b)\}$
B $\{(a, a),(b, c),(b, a)\}$
C $\{(a, a),(a, b),(b, c)\}$
*D $\{(a, b),(b, c),(c, a)\}$
E \emptyset (i.e. empty relation)

2 Which of the following relations on the set of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is transitive?

A $\quad\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x+y=3\}$
B $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 2 x=y\}$
C $\quad\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x=-y\}$
*D $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x=y\}$
E $\quad\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \neq y\}$

3 Consider the statement "Every student who had passed the entrance exams was admitted." Which of the following statements is its negation?

A All students were admitted.
B There exists a student who had not passsed the entrance exams and was admitted.
C No student was admitted.
D No student who had passed the entrance exams was admitted.
*E There exists a student who had passed the entrance exams and was not admitted.

4 Let us have an arbitrary set A and an arbitrary function f of type $A \rightarrow A$. Which of the following statements is generally true for the function f and every two arbitrary elements $x, y \in A$?

A $\quad f(x) \neq x$.
*B If $x=y$, then $f(x)=f(y)$.
C $\quad f(x)=x$.
D If $x \neq y$, then $f(x) \neq f(y)$.
E If $f(x)=f(y)$, then $x=y$.

5 How many satisfying assignments does the formula $A \Rightarrow(B \vee(B \Leftrightarrow C))$ have? (A, B and C are distinct propositional variables.)

A 2
B 8
C 1
*D 7
E 4

6 For given sets A and B, let $\mathcal{P}(A)$ denote the set of all subsets of the set A and $A \backslash B$ denote the set difference of the sets A and B. How many elements does the set $\mathcal{P}(\{a, b, c\}) \backslash \mathcal{P}(\{a, b\})$ contain?

A 1
*B 4
C 5
D 6
E 2

Linear algebra

7 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a linear mapping and let x, y be such that it holds $f(x+y)=5$ and $f(2 x+3 y)=12$. What is the value of $f(x)$?
*A 3
B 2
C 0
D 1
E It is not possible to determine the value of $f(x)$ from the given information.

8 Calculate the determinant of the following matrix:

$$
\left(\begin{array}{rrr}
3 & -2 & -3 \\
-1 & 5 & 7 \\
1 & 0 & 0
\end{array}\right)
$$

A 2
B 4
C 5
D 0
*E 1
$\mathbf{9}\left(\begin{array}{ccc}2 & 1 & -3 \\ 5 & -2 & -1\end{array}\right) \cdot\left(\begin{array}{ll}3 & 2 \\ 6 & 5 \\ 5 & 3\end{array}\right)=$

A The product of given matrices is not well defined.
B $\left(\begin{array}{rrr}-3 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 5 & 1\end{array}\right)$
C $\left.\quad \begin{array}{rr}6 & 2 \\ 30 & -10\end{array}\right)$
D $\left(\begin{array}{rr}5 & 3 \\ 11 & 3\end{array}\right)$

* $\mathbf{E}\left(\begin{array}{rr}-3 & 0 \\ -2 & -3\end{array}\right)$

10 Which of the following triples of vectors is linearly independent?

A $(-1,0,1),(2,0,-2),(1,1,1)$
B $(2,0,2),(1,1,0),(6,4,2)$
C $\quad(1,2,3),(3,2,1),(2,2,2)$
*D $(1,1,1),(1,1,0),(1,0,0)$
E $\quad(3,3,3),(4,4,4),(-2,-2,-2)$

11 Consider the following system of linear equations over \mathbb{R} :

$$
\begin{array}{r}
3 x+2 y+z=2 \\
x-2 y+z=-2 \\
-2 x-4 y-4 z=-4
\end{array}
$$

Which of the following claims holds?

A The system has infinitely many solutions and the set of all solutions is a line in \mathbb{R}^{3}.
*B The system has exactly one solution.
C Every point of \mathbb{R}^{3} is a solution of the system.
D The system has no solution.
E The system has infinitely many solutions and the set of all solutions is a plane in \mathbb{R}^{3}.

Calculus

12 Compute the value of the integral

$$
\int_{0}^{2} 6 x^{2}-\cos (\pi x) \mathrm{d} x
$$

A 24
B 1
*C 16
D 2π
E 4

13 Which of the following functions of type $\mathbb{R} \rightarrow \mathbb{R}$ is surjective?
*A x^{3}
B x^{2}
C $\sin x$
D $|x|$
E $1 / x$
14 Let us have the function $f(x)=2 x^{5}+e^{2 e}+e^{2 x}$. Which of the following functions is equal to the derivative of the function f ?

A $\quad 5 x^{4}+e^{2 x}$
*B $10 x^{4}+2 e^{2 x}$
C $5 x^{4}+e^{2}$
D $5 x^{4}+2 e^{2 x}$
E $10 x^{4}+2 e^{2}$
15 What is the value of the following series?
$\sum_{i=0}^{\infty}\left(\frac{1}{2^{i}}-\frac{1}{2^{i+1}}\right)$

A It is not possible to determine the value because the series diverges to $+\infty$.
B 2
C $\quad \frac{1}{2}$
D It is not possible to determine the value because the series oscillates.
*E 1
16 We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $\forall x \in \mathbb{R}: f(-x)=f(x)$ and that f is odd if $\forall x \in \mathbb{R}: f(-x)=-f(x)$. Choose the correct statement.

A The function $f(x)=\cos x$ is neither even nor odd.
B The function $f(x)=x^{3}-x$ is even.
*C The function $f(x)=\sin x^{2}$ is even.
D The function $f(x)=2 \sin x+x$ is both even and odd.
E The function $f(x)=|x|$ is odd.

Probability

17 Consider a standard six-sided die. Which of the following random events are stochastically independent?

A a number smaller than 4 is rolled; number greater than 4 is rolled
*B an even number is rolled; number 5 or 6 is rolled
C an even number is rolled; 1 is rolled
D an even number is rolled; number 4,5 , or 6 is rolled
E an odd number is rolled; 1 is rolled

18 Let us have a biased coin, that comes up heads with the probability 30% and tails with the probability 70%. What is the probability, rounded to whole integers, that exactly 3 out of 5 flips come up heads?

A 2%
B 1%
*C 13 \%
D 7%
E 26%

19 Consider a probability space containing two random events A and B. What is the probability of $(A \cup B)$?

A $\quad P(A)+P(B)$
B $\quad P(A) \cdot P(B)$
C $(P(A) \cdot P(B))+P(A \cap B)$
D $P(A)+P(B)+P(A \cap B)$
*E $\quad P(A)+P(B)-P(A \cap B)$

20 Consider a random variable X such that $P(X=0)=\frac{1}{4}, P(X=2)=\frac{1}{2}, P(X=4)=\frac{1}{4}$. Compute the variance of the random variable X. (Here $P(X=y)$ denotes the probability of the random variable X attaining the value y.)
*A 2
B 6
C 4
D 8
E 10

Graph theory

21 Which of the following claims is true for every connected undirected graph with 5 vertices, at least two of which are of degree 1 ?

A Graph has at least 5 edges.
*B Graph has at most 5 edges.
C Graph contains a vertex of degree 3 .
D Graph is a cycle.
E Graph is a tree.

22 Consider the following graph:

How many different spanning trees does it have?

A 14
B 11
C 13
D 10
*E 12

23 How many triangles are there in the complete graph with 4 vertices? (Triangle is a graph with 3 vertices in which each pair of vertices is connected by an edge.)

A 2
B 3
C 5
*D 4
E 6

24 Consider the following directed graph:

Decide which of the following claims about breadth-first search starting from vertex a holds. (We do not assume any ordering on the out-neighbors, i.e. the order in which breadth-first search algorithm visits the neighbors of a vertex is ambiguous.)

A Vertex f can be discovered before vertex e.
*B Vertex f will always be the last discovered vertex.
C Vertex e can be the last discovered vertex.
D Vertex e will always be discovered before vertex b.
E Vertex d will always be discovered before vertex e.

25 Consider the following undirected, edge-weighted graph:

What is the weight (i.e. the sum of edge weights) of its minimal spanning tree?

A 14
B 9
C 15
D 13
*E 11

