Entrance Examination - Mathematics

Name and Surname – fill in the field	Application No.	Test Sheet No.
		2

Sets, relations, functions, logic

- **1** Which of the following relations on the set $\{a, b, c\}$ is not a subset of any order relation on the set $\{a, b, c\}$? (Order is a reflexive, antisymmetric and transitive relation.)
- **A** $\{(a, a), (b, b)\}$
- **B** $\{(a, a), (b, c), (b, a)\}$
- **C** $\{(a, a), (a, b), (b, c)\}$
- ***D** $\{(a,b), (b,c), (c,a)\}$
- **E** \emptyset (i.e. empty relation)
- **2** Which of the following relations on the set of integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ is **transitive**?
- $\begin{array}{ll} \mathbf{A} & \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x+y=3\} \\ \mathbf{B} & \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 2x=y\} \\ \mathbf{C} & \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x=-y\} \end{array}$
- ***D** $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x=y\}$
- **E** $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x \neq y\}$
- 3 Consider the statement "Every student who had passed the entrance exams was admitted." Which of the following statements is its negation?
- A All students were admitted.
- **B** There exists a student who had not passsed the entrance exams and was admitted.
- C No student was admitted.
- **D** No student who had passed the entrance exams was admitted.
- *E There exists a student who had passed the entrance exams and was not admitted.
- **4** Let us have an arbitrary set A and an arbitrary function f of type $A \rightarrow A$. Which of the following statements is generally true for the function f and every two arbitrary elements $x, y \in A$?
- $\mathbf{A} \quad f(x) \neq x.$
- ***B** If x = y, then f(x) = f(y).
- $\mathbf{C} \quad f(x) = x.$
- **D** If $x \neq y$, then $f(x) \neq f(y)$.
- **E** If f(x) = f(y), then x = y.

- **5** How many **satisfying assignments** does the formula $A \Rightarrow (B \lor (B \Leftrightarrow C))$ have? (*A*, *B* and *C* are distinct propositional variables.)
- **A** 2
- B 8C 1
- *D 7
- Е

4

- **6** For given sets A and B, let $\mathcal{P}(A)$ denote the set of all subsets of the set A and $A \setminus B$ denote the set difference of the sets A and B. How many elements does the set $\mathcal{P}(\{a, b, c\}) \setminus \mathcal{P}(\{a, b\})$ contain?
- **A** 1
- ***B** 4
- **C** 5
- D 6E 2

Linear algebra

- **7** Let $f : \mathbb{R} \to \mathbb{R}$ be a linear mapping and let x, y be such that it holds f(x + y) = 5 and f(2x + 3y) = 12. What is the value of f(x)?
- ***A** 3
- **B** 2
- **C** 0
- **D** 1
- **E** It is not possible to determine the value of f(x) from the given information.

8 Calculate the determinant of the following matrix:

- A 2B 4
- **C** 5
- \mathbf{D} 0
- *E 1

$ \begin{array}{cccc} $	13 Which of the following functions of type $\mathbb{R} \to \mathbb{R}$ is surjective ?
A The product of given matrices is not well defined. B $\begin{pmatrix} -3 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 5 & 1 \end{pmatrix}$	*A x^{3} B x^{2} C $\sin x$ D $ x $ E $1/x$
$ \mathbf{C} \begin{pmatrix} 6 & 2 \\ 30 & -10 \end{pmatrix} $ $ \mathbf{D} \begin{pmatrix} 5 & 3 \\ 11 & 3 \end{pmatrix} $	 14 Let us have the function f(x) = 2x⁵ + e^{2e} + e^{2x}. Which of the following functions is equal to the derivative of the function f? A 5x⁴ + e^{2x} A 5x⁴ + e^{2x}
*E $\begin{pmatrix} -3 & 0 \\ -2 & -3 \end{pmatrix}$ 10 Which of the following triples of vectors is linearly independent?	*B $10x^4 + 2e^{2x}$ C $5x^4 + e^2$ D $5x^4 + 2e^{2x}$ E $10x^4 + 2e^2$ 15 What is the value of the following series?
$ \begin{array}{l} \mathbf{A} & (-1,0,1), (2,0,-2), (1,1,1) \\ \mathbf{B} & (2,0,2), (1,1,0), (6,4,2) \\ \mathbf{C} & (1,2,3), (3,2,1), (2,2,2) \\ ^{*}\mathbf{D} & (1,1,1), (1,1,0), (1,0,0) \\ \mathbf{E} & (3,3,3), (4,4,4), (-2,-2,-2) \end{array} $	A It is not possible to determine the value because the series diverges to $+\infty$. B 2 C $\frac{1}{2}$
11 Consider the following system of linear equations over \mathbb{R} : 3x + 2y + z = 2 x - 2y + z = -2	D It is not possible to determine the value be- cause the series oscillates. *E 1 16 We say that a function $f : \mathbb{R} \to \mathbb{R}$ is even if $\forall x \in \mathbb{R} : f(-x) = f(x)$ and that f is odd if
-2x - 4y - 4z = -4 Which of the following claims holds?	$\forall x \in \mathbb{R} : f(-x) = -f(x)$. Choose the correct statement. A The function $f(x) = \cos x$ is neither even nor
 A The system has infinitely many solutions and the set of all solutions is a line in R³. *B The system has exactly one solution. C Every point of R³ is a solution of the system. D The system has no solution. E The system has infinitely many solutions and the set of all solutions is a plane in R³. 	odd. B The function $f(x) = x^3 - x$ is even. *C The function $f(x) = \sin x^2$ is even. D The function $f(x) = 2\sin x + x$ is both even and odd. E The function $f(x) = x $ is odd. Probability
the set of all solutions is a plane in \mathbb{R}^3 .	17 Consider a standard six-sided die. Which of the following random events are stochastically independent?
12 Compute the value of the integral $\int_{0}^{2} 6x^{2} - \cos(\pi x) dx.$ A 24 B 1 *C 16 D 2π E 4	 A a number smaller than 4 is rolled; number greater than 4 is rolled *B an even number is rolled; number 5 or 6 is rolled C an even number is rolled; 1 is rolled D an even number is rolled; number 4, 5, or 6 is rolled E an odd number is rolled; 1 is rolled

Test Sheet No. 2

- **18** Let us have a biased coin, that comes up heads with the probability 30 % and tails with the probability 70 %. What is the probability, rounded to whole integers, that exactly 3 out of 5 flips come up heads?
- **A** 2 %
- **B** 1 %
- ***C** 13 %
- **D** 7 %
- **E** 26 %
- **19** Consider a probability space containing two random events A and B. What is the probability of $(A \cup B)$?
- $\mathbf{A} \quad P(A) + P(B)$
- **B** $P(A) \cdot P(B)$
- **C** $(P(A) \cdot P(B)) + P(A \cap B)$
- $\mathbf{D} \quad P(A) + P(B) + P(A \cap B)$
- *E $P(A) + P(B) P(A \cap B)$
- **20** Consider a random variable X such that $P(X = 0) = \frac{1}{4}$, $P(X = 2) = \frac{1}{2}$, $P(X = 4) = \frac{1}{4}$. Compute the **variance** of the random variable X. (Here P(X = y) denotes the probability of the random variable X attaining the value y.)
- ***A** 2
- **B** 6
- **C** 4
- **D** 8**E** 10
- **E** 10

Graph theory

- 21 Which of the following claims is true for every connected undirected graph with 5 vertices, at least two of which are of degree 1?
- **A** Graph has at least 5 edges.
- ***B** Graph has at most 5 edges.
- **C** Graph contains a vertex of degree 3.
- **D** Graph is a cycle.
- **E** Graph is a tree.

22 Consider the following graph:

How many different spanning trees does it have?

- **A** 14
- B 11C 13
- C 13D 10
- *E 12
- **23** How many triangles are there in the complete graph with 4 vertices? (Triangle is a graph with 3 vertices in which each pair of vertices is connected by an edge.)
- A 2B 3
- B 3C 5
- ***D** 4
- **E** 6

24 Consider the following directed graph:

Decide which of the following claims about **breadth-first search** starting from vertex *a* holds. (We do not assume any ordering on the out-neighbors, i.e. the order in which breadth-first search algorithm visits the neighbors of a vertex is ambiguous.)

- **A** Vertex f can be discovered before vertex e.
- ***B** Vertex *f* will always be the last discovered vertex.
- $\mathbf{C} \quad \text{Vertex } e \text{ can be the last discovered vertex.}$
- **D** Vertex *e* will always be discovered before vertex *b*.
- **E** Vertex d will always be discovered before vertex e.

What is the weight (i.e. the sum of edge weights) of its minimal spanning tree?

Α	14
Α	14

- **B** 9
- **C** 15
- **D** 13

***E** 11