Entrance Examination - Mathematics

Name and Surname - fill in the field	Application No.	Test Sheet No.
		1

Calculus

1 Compute the area of a flat shape A which consists of all points (x, y) satisfying the following inequalities:

$$
\begin{aligned}
& y \geq x^{2}-1 \\
& y \leq 1-x
\end{aligned}
$$

(See also the figure.)

* $\mathbf{A} \quad \frac{9}{2}$

B $\frac{11}{2}$
C $\frac{17}{4}$
D 5
E $\frac{19}{4}$
$2 \lim _{x \rightarrow \infty} 3 \cdot e^{-x}=$
A $-\infty$
B 3

* \mathbf{C}

D $3 \cdot e$
E ∞

3 In the following text, replace the terms A, B, C with suitable statements in such a way that the resulting sentence is a correct definition of a limit:

We say that L is the limit of a function f at x_{0} if the following holds:A..... $\varepsilon>0$.....B..... $\delta>0$C..... every x satisfying $0<\left|x-x_{0}\right|<\delta$ we have $|f(x)-L| \leq \varepsilon$.

A A : "there exist", B : "and", C : "such that for"
*B A : "for every", B : "there exists", C : "such that for"
C A : "for every", B : "it is not true that there exists", C : "such that for"
D A : "for every", B : "and every", C : "and"
$\mathbf{E} \quad A$: "there exists", B : "such that for every", C : "and"

4 Consider the function
$f(x)=x^{2}+\frac{1}{x}$
whose domain is $\mathbb{R} \backslash\{0\}$.
Find the set over which the function f is non-decreasing.
A $[-1,0) \cup(0,1]$
B $(-\infty,-1] \cup[1, \infty)$
C $\quad \emptyset$, i.e. f is strictly increasing over the whole domain
D $\left(-\infty,-2^{-\frac{1}{3}}\right]$
*E $\quad\left[2^{-\frac{1}{3}}, \infty\right)$

5 Consider the function
$f(x)=\sin \left(e^{x}\right)$.
The derivative of f is:

* $\mathbf{A} \cos \left(e^{x}\right) \cdot e^{x}$

B $\cos \left(e^{x} \cdot e^{x}\right)$
C $\cos \left(e^{x}\right)$
D $\sin \left(e^{x}\right) \cdot e^{x}$
E $\quad \sin \left(\cos \left(e^{x}\right)\right)$

6 Which of the following propositional formulas is a tautology? (Capital letters represent propositional variables.)

A $\quad(A \vee B) \rightarrow(A \rightarrow B)$
B $\quad A \rightarrow \neg A$
C $\quad(A \rightarrow B) \rightarrow(A \wedge B)$
*D $\quad(A \wedge B) \rightarrow(A \rightarrow B)$
E $\quad(A \rightarrow B) \rightarrow(A \vee B)$

Consider the sets $M=\{a, b\}$ and $N=\{a, c\}$. Compute the set $\mathcal{P}((M \times N) \cap(N \times M)$). (Here $\mathcal{P}(X)$ denotes the set of all subsets of X).

A $\{\{(a, a)\},\{(a, b)\},\{(b, a)\},\{(b, b)\}\}$
B $\{\emptyset, a,(a, a)\}$

* $\mathbf{C}\{\emptyset,\{(a, a)\}\}$

D $\{\emptyset\}$
$\mathbf{E} \quad\{\emptyset,\{a\}\}$

8 Which of the following predicate formulas is semantically equivalent to the formula
$\neg \exists x((\forall y P(y, x)) \wedge(\exists z P(x, z))) ?$
(Here P is a binary predicate and x, y, z are variables.)
*A $\quad \forall x((\exists y \neg P(y, x)) \vee(\forall z \neg P(x, z)))$
B $\quad(\exists x \exists y \neg P(y, x)) \wedge(\exists x \forall z \neg P(x, z))$
C $\quad(\exists x \exists y \neg P(y, x)) \vee(\exists x \forall z \neg P(x, z))$
D $\quad \exists x((\forall y \neg P(y, x)) \vee(\exists z \neg P(x, z)))$
E $\quad \forall x((\exists y P(x, y)) \vee(\forall z P(z, x)))$

9 Consider the functions F and G of the type $\mathbb{Z} \rightarrow \mathbb{Z}$ (i.e. from integers to integers), defined as follows:

$$
F(n)=n+1
$$

$G(n)=-n$.
Which of the following terms is equal to -10 ?

A $\quad G(F(G(-10)))$
B $\quad G(G(10))$
*C $\quad F(G(F(10)))$
D $F(G(F(G(10))))$
E $\quad G(F(F(G(-10))))$

10 Which of the following statements about partially ordered sets is true?

A Every partially ordered set has either the greatest or the least element.
B A partially ordered set may contain multiple greatest elements.
C Every partially ordered set with a maximal element must also have the greatest element.
D Every partially ordered set has either a minimal or a maximal element.
*E Every partially ordered set with the least element must also have a minimal element.

11 Which of the following relations on the set $\{a, b, c\}$ is not transitive?

A $\{(a, b),(a, c),(b, c)\}$
B \emptyset (i.e. the empty relation)
C $\quad\{(a, b),(a, c)\}$
D $\{(a, a),(b, b),(c, c)\}$
*E $\{(a, b),(b, c),(c, a)\}$

Probability

12 Let us roll a die two times in succession. Compute the conditional probability of the second number rolled being greater than the first number rolled, assuming that the sum of both numbers is even.

A $\quad \frac{15}{18}$
*B $\quad \frac{1}{3}$
C $\quad \frac{1}{6}$
D $\frac{15}{36}$
E $\frac{2}{3}$

13 Consider a random variable X such that $P(X=$ $-1)=\frac{1}{2}, P(X=2)=\frac{1}{3}$, and $P(X=3)=\frac{1}{6}$. Compute the expected value of random variable $Y=X^{2}$. (Here $P(X=a)$ denotes the probability of random variable X attaining the value a.)
A $\frac{16}{3}$
B $\frac{17}{18}$
C $\quad \frac{4}{9}$
*D $\frac{10}{3}$
E $\frac{1}{18}$

14 Let us roll a die 20 times in succession, all rolls being independent. Compute the probability that six is rolled exactly 8 times.

A $\quad\binom{20}{8} \cdot\left(\frac{1}{6}\right)^{7}$
B $\quad\binom{20}{8} \cdot 8 \cdot \frac{1}{6} \cdot 12 \cdot \frac{5}{6}$
*C $\quad\binom{20}{8} \cdot\left(\frac{1}{6}\right)^{8} \cdot\left(\frac{5}{6}\right)^{12}$
D $\left(\frac{1}{6}\right)^{8}$
E $\quad\left(\frac{1}{6}\right)^{8} \cdot\left(\frac{5}{6}\right)^{12}$

15 Consider the following data sample: $\{1,3,3,3,5,5,9$, Denote by m its median and by a its mean. Which of the following holds?
*A $\quad m=5, a=7$
B $\quad m=3, a=7$
C $m=3, a=5$
D $m=9, a=7$
E $m=7, a=5$

Graph theory

16 Consider the following directed graph:

Which of the following claims about depth-first search starting from vertex a is correct? (We do not assume any ordering of the vertices. Thus, the order in which the depth-first search algorithm visits the vertices is ambiguous.)

A Vertex c will always be visited before vertex d.
B Vertex b will always be visited before vertex f.

* \mathbf{C} Vertex e can be the last visited vertex.

D Vertex f will always be the last visited vertex.
E Vertex b will never be the last visited vertex.

17 Consider the following directed edge-weighted graph:

For any pair of its vertices s, s^{\prime}, let $\delta\left(s, s^{\prime}\right)$ denote the length (i.e. the sum of edge weights) of the shortest path from s to s^{\prime}. Which of the following claims holds?

A $\quad \delta(u, w)=9$
*B $\quad \delta(u, w)=6$
C $\quad \delta(u, x)=6$
D $\quad \delta(x, x)=8$
E $\quad \delta(v, w)=7$

18 An undirected graph is called complete if it does not contain loops and there is an edge between every pair of distinct vertices. Which of the following claims about the complete graph on 7 vertices is correct?

A The graph has 42 edges.
B The graph has 28 edges.
C After removing arbitrary 7 edges the resulting graph is always disconnected.
*D In order to obtain a disconnected graph, it suffices to remove 6 suitably chosen edges.
E In order to obtain a disconnected graph, it is necessary to remove at least 8 edges.

19 What is the least possible number of edges of a connected undirected loopless graph on 103 vertices?
*A 102
B 205
C 206
D 104
E 103

20 Consider the following undirected edge-weighted graph:

What is the weight (i.e. the sum of weights of edges) of its arbitrary minimal spanning tree?

A 14
B 15
C 7
*D 12
E 18

Linear algebra

21 Consider a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which rotates each vector 180° clockwise around point $(0,0)$. Which of the following is the matrix of this map in the standard basis? (Assume multiplication by a matrix from the left.)

A $\quad\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
B $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
C $\quad\left(\begin{array}{rr}0 & 1 \\ 1 & 0\end{array}\right)$
D $\quad\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

* $\mathbf{E} \quad\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$

22 Calculate the determinant of the following matrix:

$$
\left(\begin{array}{ccc}
1 & -2 & 0 \\
3 & 1 & 2 \\
2 & -3 & 0
\end{array}\right)
$$

A 5
B 12
C -6
*D -2
E 0
$23\left(\begin{array}{ccc}3 & -1 & 2 \\ -2 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{cc}-1 & 3 \\ 3 & 5 \\ 2 & 1\end{array}\right)=$
A $\left(\begin{array}{rrr}-3 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 5 & 1\end{array}\right)$
B The product is not defined.
C $\left(\begin{array}{rrr}3 & 0 & 2 \\ -2 & -1 & 5 \\ 1 & -3 & 1\end{array}\right)$
D $\left(\begin{array}{rr}2 & 7 \\ 6 & -2\end{array}\right)$
*E $\left.\quad \begin{array}{rr}-2 & 6 \\ 7 & 0\end{array}\right)$

24 Consider the following system of equations over \mathbb{R} :

$$
\begin{array}{r}
3 x+y+2 z=4 \\
-3 x+y-2 z=0
\end{array}
$$

Which of the following claims holds?

A The system has no solution.
B All points of \mathbb{R}^{3} are solutions of the given system.
C The system has infinitely many solutions and the set of these solutions forms a plane in \mathbb{R}^{3}.
*D The system has infinitely many solutions and the set of these solutions forms a line in \mathbb{R}^{3}.
E The system has exactly one solution.

25 Which of the following maps from \mathbb{R} to \mathbb{R} is linear?
*A $\quad f(x)=\frac{22}{7} x$
B $\quad f(x)=\frac{1}{x}$
C $\quad f(x)=x^{3}$
D $f(x)=\sin (x)$
E $\quad f(x)=x^{2}$

