## **Entrance Examination - Mathematics**

| Name and Surname – fill in the field                                                                                                                                                                                                        |                                                  | Application No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test Sheet No.                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                   |
| Calculus<br>Compute the area of a flat shape A which consists of all points $(x, y)$ satisfying the following inequalities:<br>$y \ge x^2 - 1$<br>$y \le 1 - x$<br>(See also the figure.)<br>$y = \frac{y}{1 - x}$<br>$y = \frac{y}{1 - x}$ | A<br>*B<br>C<br>D<br>E<br>4                      | In the following text, replace the with suitable statements in such sulting sentence is a correct definition of a the following holds:A $\varepsilon$ C every $x$ satisfying $0 <  x    f(x) - L  \le \varepsilon$ .<br>A: "there exist", $B$ : "and", $C$ : "<br>A: "for every", $B$ : "there exists"<br>A: "for every", $B$ : "it is not true?<br>C: "such that for"<br>A: "for every", $B$ : "and every", $C$ : "<br>A: "there exists", $B$ : "and every", $C$ : "<br>A: "for every", $B$ : "and every", $C$ : "<br>A: "there exists", $B$ : "such that for"<br>A: "there exists", $B$ : "such that for"<br>A: "there exists", $B$ : "such that for"<br>Consider the function<br>$f(x) = x^2 + \frac{1}{x}$<br>whose domain is $\mathbb{R} \setminus \{0\}$ .<br>Find the set over which the function form-decreasing. | the terms $A$ , $B$ , $C$<br>a way that the re-<br>inition of a limit:<br>function $f$ at $x_0$ if<br>$> 0$ B $\delta > 0$<br>$x - x_0   < \delta$ we have<br>such that for"<br>, $C$ : "such that for"<br>$\Rightarrow$ that there exists",<br>C: "and"<br>for every", $C$ : "and" |
| *A $\frac{9}{2}$<br>B $\frac{11}{2}$<br>C $\frac{17}{4}$<br>D 5<br>E $\frac{19}{4}$<br>2 $\lim_{x\to\infty} 3 \cdot e^{-x} =$<br>A $-\infty$<br>B $3$                                                                                       | B<br>C<br>D<br>*E<br>5<br>*A<br>B<br>C<br>D<br>E | $[-\infty, -1] \cup [1, \infty)$<br>$\emptyset$ , i.e. $f$ is strictly increasing ove<br>$(-\infty, -2^{-\frac{1}{3}}]$<br>$[2^{-\frac{1}{3}}, \infty)$<br>Consider the function<br>$f(x) = \sin(e^x).$<br>The derivative of $f$ is:<br>$\cos(e^x) \cdot e^x$<br>$\cos(e^x) \cdot e^x$<br>$\sin(e^x) \cdot e^x$<br>$\sin(\cos(e^x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r the whole domain                                                                                                                                                                                                                                                                  |
| *C 0<br>D $3 \cdot e$<br>E $\infty$                                                                                                                                                                                                         | Set                                              | ts, relations, function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is, logic                                                                                                                                                                                                                                                                           |

 $(A \lor B) \to (A \to B)$ Α

- в  $A \rightarrow \neg A$
- С  $(A \to B) \to (A \land B)$ \*D  $(A \land B) \to (A \to B)$
- $(A \to B) \to (A \lor B)$ E
- 7 Consider the sets  $M = \{a, b\}$  and  $N = \{a, c\}$ . Compute the set  $\mathcal{P}((M \times N) \cap (N \times M))$ . (Here  $\mathcal{P}(X)$ ) denotes the set of all subsets of X).
- Α  $\{\{(a,a)\},\{(a,b)\},\{(b,a)\},\{(b,b)\}\}$ В  $\{\emptyset, a, (a, a)\}$ \*C  $\{\emptyset, \{(a,a)\}\}$  $\{\emptyset\}$ D Ε  $\{\emptyset, \{a\}\}$
- 8 Which of the following predicate formulas is semantically equivalent to the formula

 $\neg \exists x ((\forall y P(y, x)) \land (\exists z P(x, z)))?$ 

(Here P is a binary predicate and x, y, z are variables.)

- \*A  $\forall x ((\exists y \neg P(y, x)) \lor (\forall z \neg P(x, z)))$
- В  $(\exists x \exists y \neg P(y, x)) \land (\exists x \forall z \neg P(x, z))$
- С  $(\exists x \exists y \neg P(y, x)) \lor (\exists x \forall z \neg P(x, z))$ D
- $\exists x \left( (\forall y \neg P(y, x)) \lor (\exists z \neg P(x, z)) \right)$
- E  $\forall x \left( (\exists y P(x, y)) \lor (\forall z P(z, x)) \right)$
- 9 Consider the functions *F* and *G* of the type  $\mathbb{Z} \to \mathbb{Z}$ (i.e. from integers to integers), defined as follows: F(n) = n+1G(n) = -n.Which of the following terms is equal to -10?
- G(F(G(-10)))А В G(G(10))
- \*C F(G(F(10)))
- D F(G(F(G(10))))
- G(F(F(G(-10))))Ε
- $\left| 10 \right|$  Which of the following statements about partially ordered sets is true?
- Every partially ordered set has either the greatest А or the least element.
- В A partially ordered set may contain multiple greatest elements.
- С Every partially ordered set with a maximal element must also have the greatest element.
- Every partially ordered set has either a minimal or D a maximal element.
- \*E Every partially ordered set with the least element must also have a minimal element.

- 11 Which of the following relations on the set  $\{a, b, c\}$ is not transitive?
- A  $\{(a, b), (a, c), (b, c)\}$
- В  $\emptyset$  (i.e. the empty relation)
- С  $\{(a, b), (a, c)\}$
- D  $\{(a, a), (b, b), (c, c)\}$
- \*E  $\{(a,b), (b,c), (c,a)\}$

## **Probability**

- **12** Let us roll a die two times in succession. Compute the conditional probability of the second number rolled being greater than the first number rolled, assuming that the sum of both numbers is even.
  - $\frac{15}{18}$ A
- $\frac{1}{3}$ \*B
- С  $\frac{1}{6}$
- $\frac{15}{36}$ D
- $\frac{2}{3}$ Ε
- **13** Consider a random variable X such that P(X = $(-1) = \frac{1}{2}$ ,  $P(X = 2) = \frac{1}{3}$ , and  $P(X = 3) = \frac{1}{6}$ . Compute the expected value of random variable  $Y = X^2$ . (Here P(X = a) denotes the probability of random variable X attaining the value a.)
  - $\frac{16}{3}$ A
  - $\frac{17}{18}$ В

\*D

Ε

- С
  - $\frac{10}{2}$
  - $\frac{1}{18}$
- **14** Let us roll a die 20 times in succession, all rolls being independent. Compute the probability that six is rolled exactly 8 times.
- $\binom{20}{8} \cdot \left(\frac{1}{6}\right)^7$ A
- $\binom{20}{8} \cdot 8 \cdot \frac{1}{6} \cdot 12 \cdot \frac{5}{6}$ В
- $\binom{20}{8} \cdot (\frac{1}{6})^8 \cdot (\frac{5}{6})^{12}$ \*C
- D  $(\frac{1}{6})^8$
- $(\frac{1}{6})^8 \cdot (\frac{5}{6})^{12}$ Ε

- **15** Consider the following data sample:  $\{1, 3, 3, 3, 5, 5, 9, 1|2122\}$  An undirected graph is called **complete** if it does Denote by m its median and by a its mean. Which of the following holds?
- m = 5, a = 7\*A
- в m = 3, a = 7
- С m = 3, a = 5D
- m = 9, a = 7E m = 7, a = 5

## **Graph theory**

**16** Consider the following directed graph:



Which of the following claims about depth-first **search** starting from vertex *a* is correct? (We do not assume any ordering of the vertices. Thus, the order in which the depth-first search algorithm visits the vertices is ambiguous.)

- Vertex c will always be visited before vertex d. Α
- Vertex b will always be visited before vertex f. в
- \*C Vertex *e* can be the last visited vertex.
- Vertex f will always be the last visited vertex. D
- Ε Vertex b will never be the last visited vertex.
- 17 Consider the following directed edge-weighted graph:



For any pair of its vertices s, s', let  $\delta(s, s')$  denote the length (i.e. the sum of edge weights) of the shortest path from s to s'. Which of the following claims holds?

- Α  $\delta(u, w) = 9$
- $\delta(u, w) = 6$ \*B
- С  $\delta(u, x) = 6$
- D  $\delta(x, x) = 8$
- Ε  $\delta(v, w) = 7$

- not contain loops and there is an edge between every pair of distinct vertices. Which of the following claims about the complete graph on 7 vertices is correct?
- A The graph has 42 edges.
- В The graph has 28 edges.
- С After removing arbitrary 7 edges the resulting graph is always disconnected.
- \*D In order to obtain a disconnected graph, it suffices to remove 6 suitably chosen edges.
- Ε In order to obtain a disconnected graph, it is necessary to remove at least 8 edges.
- **19** What is the least possible number of edges of a connected undirected loopless graph on 103 vertices?
- \*A 102
- В 205
- С 206
- D 104 Ε 103
- **20** Consider the following undirected edge-weighted graph:



What is the weight (i.e. the sum of weights of edges) of its arbitrary minimal spanning tree?

- 14 Α
- В 15
- 7 С
- 12 \*D Ε 18

## Linear algebra

**21** Consider a map  $\mathbb{R}^2 \to \mathbb{R}^2$  which rotates each vector 180° clockwise around point (0,0). Which of the following is the matrix of this map in the standard basis? (Assume multiplication by a matrix from the left.)

$$\mathbf{A} \quad \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \\ \mathbf{B} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \mathbf{C} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \mathbf{D} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ * \mathbf{E} \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

**22** Calculate the determinant of the following matrix:  $\begin{pmatrix}
1 & -2 & 0 \\
3 & 1 & 2 \\
2 & -3 & 0
\end{pmatrix}$ 

A 5
B 12
C −6
\*D −2

**E** 0

**23** 
$$\begin{pmatrix} 3 & -1 & 2 \\ -2 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 \\ 3 & 5 \\ 2 & 1 \end{pmatrix} =$$

$$\mathbf{A} \quad \begin{pmatrix} -3 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 5 & 1 \end{pmatrix} \\
 \mathbf{B} \quad \text{The product is not defined.} \\
 \mathbf{C} \quad \begin{pmatrix} 3 & 0 & 2 \\ -2 & -1 & 5 \\ 1 & -3 & 1 \end{pmatrix} \\
 \mathbf{D} \quad \begin{pmatrix} 2 & 7 \\ 6 & -2 \end{pmatrix} \\
 *\mathbf{E} \quad \begin{pmatrix} -2 & 6 \\ 7 & 0 \end{pmatrix}$$

**24** Consider the following system of equations over  $\mathbb{R}$ : 3x + y + 2z = 4-3x + y - 2z = 0

Which of the following claims holds?

- **A** The system has no solution.
- **B** All points of  $\mathbb{R}^3$  are solutions of the given system.
- $\begin{tabular}{ll} C & The system has infinitely many solutions and the set of these solutions forms a plane in $\mathbb{R}^3$. \end{tabular}$
- \*D The system has infinitely many solutions and the set of these solutions forms a line in  $\mathbb{R}^3$ .
- **E** The system has exactly one solution.

**25** Which of the following maps from  $\mathbb{R}$  to  $\mathbb{R}$  is linear?

\*A 
$$f(x) = \frac{22}{7}x$$
  
B  $f(x) = \frac{1}{x}$   
C  $f(x) = x^{3}$   
D  $f(x) = \sin(x)$ 

**E**  $f(x) = x^2$